

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 527-0883

TAPI Developers Guide for Cisco Unified
Communications Manager Release 7.1(2)

Text Part Number: OL-18532-01

http://www.cisco.com

HE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL
STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT
SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE
OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s public
domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH
ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT
LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF
DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING,
WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO
OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

CCDE, CCENT, Cisco Eos, Cisco HealthPresence, the Cisco logo, Cisco Lumin, Cisco Nexus, Cisco StadiumVision, Cisco TelePresence, Cisco WebEx, DCE, and Welcome
to the Human Network are trademarks; Changing the Way We Work, Live, Play, and Learn and Cisco Store are service marks; and Access Registrar, Aironet, AsyncOS,
Bringing the Meeting To You, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, CCVP, Cisco, the Cisco Certified Internetwork Expert logo, Cisco IOS,
Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity, Collaboration Without Limitation, EtherFast, EtherSwitch, Event Center, Fast Step,
Follow Me Browsing, FormShare, GigaDrive, HomeLink, Internet Quotient, IOS, iPhone, iQuick Study, IronPort, the IronPort logo, LightStream, Linksys, MediaTone,
MeetingPlace, MeetingPlace Chime Sound, MGX, Networkers, Networking Academy, Network Registrar, PCNow, PIX, PowerPanels, ProConnect, ScriptShare, SenderBase,
SMARTnet, Spectrum Expert, StackWise, The Fastest Way to Increase Your Internet Quotient, TransPath, WebEx, and the WebEx logo are registered trademarks of
Cisco Systems, Inc. and/or its affiliates in the United States and certain other countries.

All other trademarks mentioned in this document or website are the property of their respective owners. The use of the word partner does not imply a partnership relationship
between Cisco and any other company. (0812R)

Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the
document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.

TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)
Copyright © 2000-2009, Cisco Systems, Inc.
All rights reserved.

T
OL-18532-01
C O N T E N T S
Preface xv

Purpose xv

Audience xv

Organization xvi

Related Documentation xvi

Developer Support xvii

Conventions xviii

Obtaining Documentation and Submitting a Service Request xix

Cisco Product Security Overview xix

OpenSSL/Open SSL Project xix

C H A P T E R 1 Overview 1-1

Cisco Unified TSP Overview 1-1

Cisco Unified TSP Concepts 1-2

Basic TAPI Applications 1-2

Cisco TSP Components 1-3

Cisco Wave Drivers 1-3

TAPI Debugging 1-4

CTI Manager (Cluster Support) 1-4

QoS Support 1-6

Presentation Indication (PI) 1-6

Call Control 1-6

CTI Port 1-7

Dynamic Port Registration 1-7

CTI Route Point 1-7

Media Termination at Route Point 1-8

Monitoring Call Park Directory Numbers 1-8

Multiple Cisco Unified TSPs 1-8

CTI Device/Line Restriction 1-9

C H A P T E R 2 New and Changed Information 2-1

Cisco Unified Communications Manager Release 7.1(2) 2-1

Features Supported in Previous Releases 2-2
iii
API Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

Contents
Cisco Unified Communications Manager Release 7.0(1) 2-2

Cisco Unified Communications Manager Release 6.1(x) 2-3

Cisco Unified Communications Manager Release 6.0(1) 2-3

Cisco Unified Communications Manager Release 5.1 2-3

Cisco Unified Communications Manager Release 5.0 2-4

Cisco Unified Communications Manager Release 4.x 2-4

Cisco Unified Communications Manager Releases Prior to 4.x 2-4

C H A P T E R 3 Features Supported by TSP 3-1

IPv6 Support 3-2

Direct Transfer Across Lines Support 3-2

Message Waiting Indicator Enhancement 3-3

Swap and Cancel Softkey Support 3-4

Drop-Any-Party Support 3-5

Park Monitoring Support 3-5

Logical Partitioning Support 3-7

Support for Cisco Unfied IP Phone 6900 Series 3-7

Join Across Lines (SIP) 3-8

Localization Infrastructure Changes 3-8

Do Not Disturb–Reject 3-9

Calling Party Normalization 3-10

Click to Conference 3-10

Microsoft Windows Vista 3-10

Join Across Lines (SCCP) 3-11

Intercom Support 3-11

Secure Conferencing Support 3-12

Do Not Disturb 3-13

Conference Enhancements 3-14

Arabic and Hebrew Language Support 3-15

Additional Features Supported on SIP Phones 3-16

Silent Monitoring 3-16

Silent Recording 3-17

Calling Party IP Address 3-18

Partition Support 3-18

Alternate Script 3-19

Secure RTP 3-19

SuperProvider 3-20

Refer and Replaces for Phones that are Running SIP 3-21

SIP URL Address 3-22

3XX 3-22
iv
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Contents
Secure TLS Support 3-22

Monitoring Call Park Directory Numbers 3-24

Super Provider Support 3-24

Unicode Support 3-25

Line–Side Phones That Runs SIP 3-25

Redirect and Blind Transfer 3-26

Direct Transfer 3-27

Join 3-27

Set the Original Called Party upon Redirect 3-28

Cisco Unified TSP Auto Update 3-28

Multiple Calls per Line Appearance 3-29

Shared Line Appearance 3-29

Select Calls 3-30

Forced Authorization Code and Client Matter Code 3-30

CTI Port Third-Party Monitoring Port 3-31

Translation Pattern 3-31

Forwarding 3-31

Extension Mobility 3-31

Directory Change Notification 3-32

Privacy Release 3-32

Barge and cBarge 3-32

XSI Object Pass Through 3-33

Silent Install Support 3-33

C H A P T E R 4 Cisco Unified TAPI Installation 4-1

Installing the Cisco Unified TSP 4-1

Silent Installation 4-2

Activating the Cisco Unified TSP 4-2

Configuring the Cisco Unified TSP 4-3

Cisco Unified TSP Configuration Settings 4-4

General 4-5

User 4-5

CTI Manager 4-6

Wave 4-7

Trace 4-10

Advanced 4-12

Language 4-13

Installing the Wave Driver 4-13

Saving Wave Driver Information 4-15
v
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Contents
Verifying the Wave Driver Exists 4-16

Verifying the Cisco Unified TSP Installation 4-16

Setting Up Client-Server Configuration 4-17

Uninstalling the Wave Driver 4-18

Removing the Cisco Unified TSP 4-19

Managing the Cisco Unified TSP 4-20

Reinstalling the Cisco Unified TSP 4-20

Upgrading the Cisco Unified TSP 4-20

Auto Update for Cisco Unified TSP Upgrades 4-21

Uninstalling the Cisco Unified TSP 4-23

C H A P T E R 5 Basic TAPI Implementation 5-1

Overview 5-1

TAPI Line Functions 5-1

lineAccept 5-4

lineAddProvider 5-4

lineAddToConference 5-5

lineAnswer 5-5

lineBlindTransfer 5-6

lineCallbackFunc 5-7

lineClose 5-8

lineCompleteTransfer 5-8

lineConfigProvider 5-9

lineDeallocateCall 5-10

lineDevSpecific 5-10

lineDevSpecificFeature 5-12

lineDial 5-13

lineDrop 5-14

lineForward 5-14

lineGenerateDigits 5-17

lineGenerateTone 5-17

lineGetAddressCaps 5-18

lineGetAddressID 5-19

lineGetAddressStatus 5-20

lineGetCallInfo 5-21

lineGetCallStatus 5-21

lineGetConfRelatedCalls 5-22

lineGetDevCaps 5-22

lineGetID 5-23
vi
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Contents
lineGetLineDevStatus 5-24

lineGetMessage 5-25

lineGetNewCalls 5-26

lineGetNumRings 5-27

lineGetProviderList 5-27

lineGetRequest 5-28

lineGetStatusMessages 5-29

lineGetTranslateCaps 5-30

lineHandoff 5-31

lineHold 5-32

lineInitialize 5-32

lineInitializeEx 5-33

lineMakeCall 5-34

lineMonitorDigits 5-35

lineMonitorTones 5-36

lineNegotiateAPIVersion 5-36

lineNegotiateExtVersion 5-37

lineOpen 5-38

linePark 5-40

linePrepareAddToConference 5-41

lineRedirect 5-42

lineRegisterRequestRecipient 5-43

lineRemoveFromConference 5-44

lineRemoveProvider 5-45

lineSetAppPriority 5-45

lineSetCallPrivilege 5-47

lineSetNumRings 5-47

lineSetStatusMessages 5-48

lineSetTollList 5-49

lineSetupConference 5-50

lineSetupTransfer 5-51

lineShutdown 5-52

lineTranslateAddress 5-52

lineTranslateDialog 5-54

lineUnhold 5-55

lineUnpark 5-56

TAPI Line Messages 5-56

LINE_ADDRESSSTATE 5-57

LINE_APPNEWCALL 5-58

LINE_CALLDEVSPECIFIC 5-59
vii
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Contents
LINE_CALLINFO 5-60

LINE_CALLSTATE 5-60

LINE_CLOSE 5-64

LINE_CREATE 5-64

LINE_DEVSPECIFIC 5-65

LINE_DEVSPECIFICFEATURE 5-66

LINE_GATHERDIGITS 5-67

LINE_GENERATE 5-68

LINE_LINEDEVSTATE 5-68

LINE_MONITORDIGITS 5-69

LINE_MONITORTONE 5-70

LINE_REMOVE 5-71

LINE_REPLY 5-71

LINE_REQUEST 5-72

TAPI Line Device Structures 5-72

LINEADDRESSCAPS 5-73

LINEADDRESSSTATUS 5-81

LINEAPPINFO 5-82

LINECALLINFO 5-83

LINECALLLIST 5-90

LINECALLPARAMS 5-91

LINECALLSTATUS 5-92

LINECARDENTRY 5-95

LINECOUNTRYENTRY 5-96

LINECOUNTRYLIST 5-98

LINEDEVCAPS 5-99

LINEDEVSTATUS 5-103

LINEEXTENSIONID 5-105

LINEFORWARD 5-105

LINEFORWARDLIST 5-108

LINEGENERATETONE 5-108

LINEINITIALIZEEXPARAMS 5-109

LINELOCATIONENTRY 5-110

LINEMESSAGE 5-112

LINEMONITORTONE 5-113

LINEPROVIDERENTRY 5-113

LINEPROVIDERLIST 5-114

LINEREQMAKECALL 5-115

LINETRANSLATECAPS 5-115

LINETRANSLATEOUTPUT 5-116
viii
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Contents
TAPI Phone Functions 5-119

phoneCallbackFunc 5-119

phoneClose 5-120

phoneDevSpecific 5-120

phoneGetDevCaps 5-121

phoneGetDisplay 5-122

phoneGetLamp 5-122

phoneGetMessage 5-123

phoneGetRing 5-124

phoneGetStatus 5-125

phoneGetStatusMessages 5-125

phoneInitialize 5-127

phoneInitializeEx 5-128

phoneNegotiateAPIVersion 5-130

phoneOpen 5-131

phoneSetDisplay 5-132

phoneSetLamp 5-133

phoneSetStatusMessages 5-134

phoneShutdown 5-135

TAPI Phone Messages 5-136

PHONE_BUTTON 5-137

PHONE_CLOSE 5-139

PHONE_CREATE 5-139

PHONE_REMOVE 5-140

PHONE_REPLY 5-141

PHONE_STATE 5-141

TAPI Phone Structures 5-143

PHONECAPS Structure 5-143

PHONEINITIALIZEEXPARAMS 5-145

PHONEMESSAGE 5-146

PHONESTATUS 5-146

VARSTRING 5-149

Wave Functions 5-150

waveInAddBuffer 5-150

waveInClose 5-151

waveInGetID 5-151

waveInGetPosition 5-152

waveInOpen 5-152

waveInPrepareHeader 5-153
ix
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Contents
waveInReset 5-154

waveInStart 5-154

waveInUnprepareHeader 5-155

waveOutClose 5-155

waveOutGetDevCaps 5-155

waveOutGetID 5-156

waveOutGetPosition 5-156

waveOutOpen 5-157

waveOutPrepareHeader 5-158

waveOutReset 5-159

waveOutUnprepareHeader 5-159

waveOutWrite 5-159

C H A P T E R 6 Cisco Device-Specific Extensions 6-1

Cisco Line Device Specific Extensions 6-1

LINEDEVCAPS 6-3

LINECALLINFO 6-6

LINEDEVSTATUS 6-14

CCiscoLineDevSpecific 6-16

Message Waiting 6-18

Message Waiting Dirn 6-19

Message Summary 6-20

Message Summary Dirn 6-22

Audio Stream Control 6-24

Set Status Messages 6-26

Swap-Hold/SetupTransfer 6-27

Redirect Reset Original Called ID 6-27

Port Registration per Call 6-28

Setting RTP Parameters for Call 6-31

Redirect Set Original Called ID 6-32

Join 6-33

Set User SRTP Algorithm IDs 6-34

Explicit Acquire 6-35

Explicit De-Acquire 6-36

Redirect FAC CMC 6-36

Blind Transfer FAC CMC 6-37

CTI Port Third Party Monitor 6-38

Send Line Open 6-39

Set Intercom SpeedDial 6-40

Intercom Talk Back 6-41
x
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Contents
Redirect with Feature Priority 6-41

Start Call Monitoring 6-42

Start Call Recording 6-44

StopCall Recording 6-45

Set IP Address Mode 6-45

Set IPv6 Address 6-46

Set RTP Parameters for IPv6 Calls 6-48

Direct Transfer 6-48

Cisco Line Device Feature Extensions 6-49

LINEDEVCAPS 6-49

LINEDEVSTATUS 6-50

CCiscoLineDevSpecificFeature 6-50

Do-Not-Disturb 6-51

Do-Not-Disturb Change Notification Event 6-52

Cisco Phone Device-Specific Extensions 6-53

CCiscoPhoneDevSpecific 6-54

CCiscoPhoneDevSpecificDataPassThrough 6-55

CCiscoPhoneDevSpecificAcquire 6-56

CCiscoPhoneDevSpecificDeacquire 6-57

CCiscoPhoneDevSpecificGetRTPSnapshot 6-58

Messages 6-58

Start Transmission Events 6-59

Start Reception Events 6-60

Stop Transmission Events 6-61

Stop Reception Events 6-61

Existing Call Events 6-62

Open Logical Channel Events 6-62

LINECALLINFO_DEVSPECIFICDATA Events 6-62

Call Tone Changed Events 6-63

C H A P T E R 7 Cisco Unified TAPI Examples 7-1

MakeCall 7-1

OpenLine 7-2

CloseLine 7-5

A P P E N D I X A Message Sequence Charts A-1

Abbreviations A-2

Manual Outbound Call A-2

Blind Transfer A-5
xi
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Contents
Redirect Set Original Called (TxToVM) A-6

Shared Lines-Initiating a New Call Manually A-9

Presentation Indication A-13

Forced Authorization and Client Matter Code Scenarios A-18

Refer and Replaces Scenarios A-27

3XX A-36

SRTP A-37

Intercom A-37

Secure Conferencing A-40

Monitoring and Recording A-45

Conference Enhancements A-50

Calling Party IP Address A-57

Click to Conference A-58

Calling Party Normalization A-67

Do Not Disturb–Reject A-71

Join Across Lines A-74

IPv6 Use Cases A-88

Direct Transfer Across Lines A-96

Swap or Cancel Support A-103

Drop Any Party A-125

Park Monitoring A-138

Logical Partitioning Support A-149

Support for Cisco IP Phone 6900 Series A-153

A P P E N D I X B Cisco Unified TAPI Interfaces B-1

Cisco Unified TAPI Version 2.1 Interfaces B-1

Core Package B-1

A P P E N D I X C Troubleshooting Cisco Unified TAPI C-1

Cisco TSP 3.1 Installation Issues C-1

Cisco TSP Configuration in Windows C-2

Wave Driver Installation in Windows C-3

Wave Driver Uninstallation in Windows C-4

TSP Trace of Internal Messages C-5

CTI Ports and Cisco Unified Communications Manager Administration C-5

Route Points and Cisco Unified Communications Manager Administration C-6

TSP Operation Verification C-6

Version Compatibility C-6
xii
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Contents
Cisco TSP Readme C-6

Common Issues C-6

A P P E N D I X D Cisco Unified TAPI Operations-by-Release D-1

A P P E N D I X E CTI Supported Devices E-1

IN D E X
xiii
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Contents
xiv
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Preface

This chapter describes the purpose, intended audience, and organization of this document and describes
the conventions that convey instructions and other information. It contains the following topics:

 • Purpose, page xv

 • Audience, page xv

 • Organization, page xvi

 • Related Documentation, page xvi

 • Developer Support, page xvii

 • Conventions, page xviii

 • Obtaining Documentation and Submitting a Service Request, page xix

 • Cisco Product Security Overview, page xix

 • OpenSSL/Open SSL Project, page xix

Purpose
This document describes the Cisco Unified TAPI implementation by detailing the functions that
comprise the implementation software and illustrating how to use these functions to create applications
that support the Cisco Unified Communications hardware, software, and processes. You should use this
document with the Cisco Unified Communications Manager manuals to develop applications.

Audience
Cisco intends this document to be for use by telephony software engineers who are developing Cisco
telephony applications that require TAPI. This document assumes that the engineer is familiar with both
the C or C++ languages and the Microsoft TAPI specification.

This document assumes that you have knowledge of C or C++ languages and the Microsoft TAPI
specification.You must also have knowledge or experience in the following areas:

 • Extensible Markup Language (XML)

 • Hypertext Markup Language (HTML)

 • Hypertext Transport Protocol (HTTP)

 • Socket programming
xv
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

http://www.w3.org/XML/
http://www.w3.org/Protocols/rfc2616/rfc2616.html

Preface
 • TCP/IP Protocol

 • Web Service Definition Language (WSDL) 1.1

 • Secure Sockets Layer (SSL)

In addition, as a user of the Cisco Unified Communications Manager APIs, you must have a firm
understanding of XML Schema. For more information about XML Schema, refer to
http://www.w3.org/TR/xmlschema-0/.

You must have an understanding of Cisco Unified Communications Manager and its applications. See
the “Related Documentation” section on page xvi for Cisco Unified Communications Manager
documents and other related technologies.

Organization

Related Documentation
This section lists documents and URLs that provide information on Cisco Unified Communications
Manager, Cisco Unified IP Phones, TAPI specifications, and the technologies that are required to
develop applications.

Chapter Description

Chapter 1, “Overview” Outlines key concepts for Cisco Unified TAPI and
lists all functions that are available in the
implementation.

Chapter 2, “New and Changed Information” Provides a list new and changed features
release–by–release of Cisco Unified
Communications Manager.

Chapter 4, “Cisco Unified TAPI Installation” Provides installation procedures for Cisco Unified
TAPI and Cisco Unified TSP.

Chapter 5, “Basic TAPI Implementation” Describes the supported functions in the Cisco
implementation of standard Microsoft TAPI v2.1.

Chapter 6, “Cisco Device-Specific Extensions” Describes the functions that comprise the Cisco
hardware-specific implementation classes.

Chapter 7, “Cisco Unified TAPI Examples” Provides examples that illustrate the use of the Cisco
Unified TAPI implementation.

Appendix A, “Message Sequence Charts” Lists possible call scenarios and use cases.

Appendix B, “Cisco Unified TAPI Interfaces” Lists APIs that are supported or not supported.

Appendix C, “Troubleshooting Cisco Unified
TAPI”

Describes troubleshooting techniques.

Appendix D, “Cisco Unified TAPI
Operations-by-Release”

Lists features, line functions, messages, and
structures; phone functions, messages, and
structures that have been added or modified by Cisco
Unified Communications Manager release.

Appendix E, “CTI Supported Devices” Lists CTI supported devices.
xvi
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/xmlschema-0/

Preface
 • Cisco Unified Communications Manager Release 7.1(2)—A suite of documents that relate to the
installation and configuration of Cisco Unified Communications Manager. Refer to the Cisco
Unified Communications Manager Documentation Guide for Release 7.1(2) for a list of documents
on installing and configuring Cisco Unified Communications Manager 7.1(2), including:

 – Cisco Unified Communications Manager Administration Guide, Release 7.1(2).

 – Cisco Unified Communications Manager System Guide, Release 7.1(2).

 – Cisco Unified Communications Manager Features and Services Guide, Release 7.1(2).

 – Cisco Unified Communications Manager Release Notes, Release 7.1(2).

 • Cisco Unified IP Phones and Services—A suite of documents that relate to the installation and
configuration of Cisco Unified IP Phones.

 • Cisco Distributed Director—A suite of documents that relate to the installation and configuration
of Cisco Distributed Director.

For more information about TAPI specifications, creating an application to use TAPI, or TAPI
administration, see the following documents:

 • Microsoft TAPI 2.1 Features:
http://www.microsoft.com/ntserver/techresources/commnet/tele/tapi21.asp

 • Getting Started with Windows Telephony
http://www.microsoft.com/NTServer/commserv/deployment/planguides/getstartedtele.asp

 • Windows Telephony API (TAPI)
http://www.microsoft.com/NTServer/commserv/exec/overview/tapiabout.asp

 • Creating Next Generation Telephony Applications:
http://www.microsoft.com/NTServer/commserv/techdetails/prodarch/tapi21wp.asp

 • The Microsoft Telephony Application Programming Interface (TAPI) Programmer's Reference

 • “For the Telephony API, Press 1; For Unimodem, Press 2; or Stay on the Line”—A paper on TAPI
by Hiroo Umeno, a COMM and TAPI specialist at Microsoft.

http://www.microsoft.com/msj/0498/tapi.aspx

 • “TAPI 2.1 Microsoft TAPI Client Management”

 • “TAPI 2.1 Administration Tool”

Developer Support
The Developer Support Program provides formalized support for Cisco Systems interfaces to enable
developers, customers, and partners in the Cisco Service Provider solutions Ecosystem and Cisco
AVVID Partner programs to accelerate their delivery of compatible solutions.

The Developer Support Engineers are an extension of the product technology engineering teams. They
have direct access to the resources necessary to provide expert support in a timely manner.

For additional information on this program, refer to the Developer Support Program web site at
http://developer.cisco.com.
xvii
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

http://developer.cisco.com
http://developer.cisco.com
http://www.microsoft.com/msj/0498/tapi.aspx
http://www.microsoft.com/ntserver/techresources/commnet/tele/tapi21.asp
http://www.microsoft.com/NTServer/commserv/deployment/planguides/getstartedtele.asp
http://www.microsoft.com/NTServer/commserv/exec/overview/tapiabout.asp
http://www.microsoft.com/NTServer/commserv/techdetails/prodarch/tapi21wp.asp

Preface
Conventions
This document uses the following conventions:

Notes use the following conventions:

Note Means reader take note. Notes contain helpful suggestions or references to material not covered in the
publication.

Tip Means the following information might help you solve a problem.

Timesaver Means the described action saves time. You can save time by performing the action described in the
paragraph.

Convention Description

boldface font Commands and keywords are in boldface.

italic font Arguments for which you supply values are in italics.

[] Elements in square brackets are optional.

{ x | y | z } Alternative keywords are grouped in braces and separated
by vertical bars.

[x | y | z] Optional alternative keywords are grouped in brackets and
separated by vertical bars.

string An unquoted set of characters. Do not use quotation marks
around the string or the string will include the quotation
marks.

screen font Terminal sessions and information that the system displays
are in screen font.

boldface screen
font

Information you must enter is in boldface screen font.

italic screen font Arguments for which you supply values are in italic screen
font.

This pointer highlights an important line of text in an
example.

^ The symbol ^ represents the key labeled Control—for
example, the key combination ̂ D in a screen display means
hold down the Control key while you press the D key.

< > Nonprinting characters, such as passwords are in angle
brackets.
xviii
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Preface
Obtaining Documentation and Submitting a Service Request
For information on obtaining documentation, submitting a service request, and gathering additional
information, see the monthly What's New in Cisco Product Documentation, which also lists all new and
revised Cisco technical documentation, at:

http://www.cisco.com/en/US/docs/general/whatsnew/whatsnew.html

Subscribe to the What's New in Cisco Product Documentation as a Really Simple Syndication (RSS)
feed and set content to be delivered directly to your desktop using a reader application. The RSS feeds
are a free service and Cisco currently supports RSS Version 2.0.

Cisco Product Security Overview
This product contains cryptographic features and is subject to United States and local country laws
governing import, export, transfer and use. Delivery of Cisco cryptographic products does not imply
third-party authority to import, export, distribute or use encryption. Importers, exporters, distributors
and users are responsible for compliance with U.S. and local country laws. By using this product you
agree to comply with applicable laws and regulations. If you are unable to comply with U.S. and local
laws, return this product immediately.

A summary of U.S. laws governing Cisco cryptographic products may be found at:
http://www.cisco.com/wwl/export/crypto/tool/stqrg.html.

If you require further assistance please contact us by sending email to export@cisco.com.

OpenSSL/Open SSL Project
The following link provides information about the OpenSSL notice:

http://www.cisco.com/en/US/products/hw/phones/ps379/products_licensing_information_listing.html
xix
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

http://www.cisco.com/en/US/products/hw/phones/ps379/products_licensing_information_listing.html
http://www.cisco.com/en/US/docs/general/whatsnew/whatsnew.html

http://www.cisco.com/wwl/export/crypto/tool/stqrg.html

export@cisco.com

Preface
xx
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

TAPI Developer Guide for Cisc
OL-18532-01
C H A P T E R 1

Overview

This chapter describes the major concepts of Cisco Unified TAPI service provider (Cisco Unified TSP)
implementation. It contains the following sections:

 • Cisco Unified TSP Overview, page 1-1

 • Cisco Unified TSP Concepts, page 1-2

Cisco Unified TSP Overview
The standard TAPI provides an unchanging programming interface for different implementations. The
goal of Cisco in implementing TAPI for the Cisco Unified Communications Manager platform remains
to conform as closely as possible to the TAPI specification, while providing extensions that enhance
TAPI and expose the advanced features of Cisco Unified Communications Manager to applications.

As versions of Cisco Unified Communications Manager and Cisco Unified TSP are released, variances
in the API should be minor and should tend in the direction of compliance. Cisco stays committed to
maintaining its API extensions with the same stability and reliability, though additional extensions may
be provided as new Cisco Unified Communications Manager features become available.
1-1
o Unified Communications Manager Release 7.1(2)

Chapter 1 Overview
Cisco Unified TSP Concepts
Figure 1-1 shows the architecture of TAPI.

Figure 1-1 Architecture of TAPI Service Process

Note The Cisco TSP is a TAPI 2.1 service provider.

Cisco Unified TSP Concepts
The following are described in this section:

 • Basic TAPI Applications, page 1-2

 • Cisco TSP Components, page 1-3

 • Cisco Wave Drivers, page 1-3

 • TAPI Debugging, page 1-4

 • Cisco TSP Components, page 1-3

See “Basic TAPI Implementation” section on page 5-1 and “Cisco Device-Specific Extensions” section
on page 6-1 for lists and descriptions of interfaces and extensions.

Basic TAPI Applications
Microsoft has defined some basic APIs which can be invoked/supported from application code. All
Microsoft defined APIs that can be used from the TAPI applications are declared in TAPI.H file. TAPI.H
file is a standard library file that is with the VC++/VS2005 Installation. For example, C:\Program
Files\Microsoft Visual Studio\VC98\Include\TAPI.H.

32-bit Process

32-bit TAPI Application

Wave C-API

C-API

WinMM.DLL

AVAudio32.DLL
(User mode WAVE

Driver Interface)

TAPI C-API

TAPI32.DLL

32-bit TAPI Service Process

TAPISRV

C++ Wrapper

CiscoNTWave.DLL
(COM Object Server)

CiscoTSP

TSPI C-API

32-bit CTIManager Service Process

(Note: This process will reside
on a remote machine.)

CTI Manager

WinNT Kernel

AVAudio32.DLL
(Kernel mode WAVE Driver)

TCP/IP

33
32

0

1-2
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 1 Overview
Cisco Unified TSP Concepts
To use any specific API which is added or provided by Cisco TSP, the application needs to invoke that
API by using the LineDevSpecific API.

Simple Application
#include <tapi.h>
#include <string>
#include "StdAfx.h"
class TapiLineApp {
LINEINITIALIZEEXPARAMS mLineInitializeExParams;//was declared in TAPI.h files
 HLINEAPP mhLineApp;
 DWORD mdwNumDevs;
 DWORD dwAPIVersion = 0x20005

public:
 // App Initialization
 // Note hInstance can be NULL
 // appstr – value can be given the app name “test program”
 bool TapiLineApp::LineInitializeEx(HINSTANCE hInstance, std::string appStr)
{
 unsigned long lReturn = 0;
 mLineInitializeExParams.dwTotalSize = sizeof(mLineInitializeExParams);
 mLineInitializeExParams.dwOptions = LINEINITIALIZEEXOPTION_USEEVENT;
 lReturn = lineInitializeEx (&mhLineApp, hInstance, NULL, appStr.c_str),
&mdwNumDevs,&dwAPIVersion,&LineInitializeExParams);
 if (lReturn == 0) {
 return true;
 }
 else {
 return false;
 }
}
//App shutdown
bool TapiLineApp::LineShutdown()
{
 return! (lineShutdown (mhLineApp));
}
};

Cisco TSP Components
The following are Cisco TSP components:

 • CiscoTsp001.tsp – TAPI service implementation provided by Cisco TSP

 • CTIQBE over TCP/IP – Cisco protocol used to monitor and control devices and lines

 • CTI Manager Service – Manages CTI resources and connections to devices. Exposed to 3rd-party
applications via Cisco TSP and/or JTAPI API

Cisco Wave Drivers
Cisco TSP can be configured to provide either first or third-party call control. In First-Party Call Control,
the audio stream is terminated by the application. Ordinarily, this is done using the Cisco Wave Driver.
AVAudio32.dll implements the wave interfaces for the Cisco wave drivers. In Third-Party Call control,
the audio stream termination is done by the actual physical device like an IP phone or a group of IP
phones for which your application is responsible.

For information about the installation of the wave drivers, see Installing the Wave Driver, page 4-13.
1-3
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 1 Overview
Cisco Unified TSP Concepts
TAPI Debugging
The TAPI browser is a TAPI debugging application. It can be downloaded from the Microsoft MSDN
Web site at ftp://ftp.microsoft.com/developr/TAPI/tb20.zip. The TAPI browser can be used to initialize
TAPI, for use by TAPI developers to test a TAPI implementation and to verify that the TSP is operational.

CTI Manager (Cluster Support)
The CTI Manager, along with the Cisco Unified TSP, provide an abstraction of the Cisco Unified
Communications Manager cluster that allows TAPI applications to access Cisco Unified
Communications Manager resources and functionality without being aware of any specific Cisco Unified
Communications Manager. The Cisco Unified Communications Manager cluster abstraction also
enhances the failover capability of CTI Manager resources. A failover condition occurs when a node
fails, a CTI Manager fails, or a TAPI application fails, as illustrated in Figure 1-2.

Note Cisco does not support CTI device monitoring or call control with 3rd-party devices.

Figure 1-2 Cluster Support Architecture

Cisco Unified Communications Manager Failure

When a Cisco Unified Communications Manager node in a cluster fails, the CTI Manager recovers the
affected CTI ports and route points by reopening these devices on another Cisco Unified
Communications Manager node. When the failure is first detected, Cisco Unified TSP sends a
PHONE_STATE (PHONESTATE_SUSPEND) message to the TAPI application.

When the CTI port/route point is successfully reopened on another Cisco Unified Communications
Manager, Cisco Unified TSP sends a phone PHONE_STATE (PHONESTATE_RESUME) message to
the TAPI application. If no Cisco Unified Communications Manager is available, the CTI Manager waits
until an appropriate Cisco Unified Communications Manager comes back in service and tries to open the
device again. The lines on the affected device also go out of service and in service with the corresponding
LINE_LINEDEVSTATE (LINEDEVSTATE_OUTOFSERVICE) and LINE_LINEDEVSTATE
(LINEDEVSTATE_INSERVICE) events Cisco Unified TSP sends to the TAPI application. If for some
reason the device or lines cannot be opened, even when all Cisco Unified Communications Managers
come back in service, the system closes the devices or lines, and Cisco Unified TSP will send
PHONE_CLOSE or LINE_CLOSE messages to the TAPI application.

TAPI application

Cisco TSP

CTI Manager
(primary)

CTI Manager
(secondary)

CallManagers

63
10

2

1-4
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

ftp://ftp.microsoft.com/developr/TAPI/tb20.zip

Chapter 1 Overview
Cisco Unified TSP Concepts
When a failed Cisco Unified Communications Manager node comes back in service, CTI Manager
“re-homes” the affected CTI ports or route points to their original Cisco Unified Communications
Manager. The graceful re-homing process ensures that the re-homing only starts when calls are no longer
being processed or are active on the affected device. For this reason, the re-homing process may not
finish for a long time, especially for route points, which can handle many simultaneous calls.

When a Cisco Unified Communications Manager node fails, phones currently re-home to another node
in the same cluster. If a TAPI application has a phone device opened and the phone goes through the
re-homing process, CTI Manager automatically recovers that device, and Cisco Unified TSP sends a
PHONE_STATE (PHONESTATE_SUSPEND) message to the TAPI application. When the phone
successfully re-homes to another Cisco Unified Communications Manager node, Cisco Unified TSP
sends a PHONE_STATE (PHONESTATE_RESUME) message to the TAPI application.

The lines on the affected device also go out of service and in service, and Cisco Unified TSP sends
LINE_LINEDEVSTATE (LINEDEVSTATE_OUTOFSERVICE) and LINE_LINEDEVSTATE
(LINEDEVSTATE_INSERVICE) messages to the TAPI application.

Call Survivability

When a device or Cisco Unified Communications Manager failure occurs, no call survivability exists;
however, media streams that are already connected between devices will survive. Calls in the process of
being set up or modified (transfer, conference, redirect) simply get dropped.

CTI Manager Failure

When a primary CTI Manager fails, Cisco Unified TSP sends a PHONE_STATE
(PHONESTATE_SUSPEND) message and a LINE_LINEDEVSTATE
(LINEDEVSTATE_OUTOFSERVICE) message for every phone and line device that the application
opened. Cisco Unified TSP then connects to a backup CTIManager. When a connection to a backup CTI
Manager is established and the device or line successfully reopens, the Cisco Unified TSP sends a
PHONE_STATE (PHONESTATE_RESUME) or LINE_LINEDEVSTATE
(LINEDEVSTATE_INSERVICE) message to the TAPI application. If the Cisco Unified TSP is
unsuccessful in opening the device or line for a CTI port or route point, the Cisco Unified TSP closes
the device or line by sending the appropriate PHONE_CLOSE or LINE_CLOSE message to the TAPI
application.

After Cisco Unified TSP is connected to the backup CTIManager, Cisco Unified TSP will not reconnect
to the primary CTIManager until the connection is lost between Cisco Unified TSP and the backup
CTIManager.

If devices are added to or removed from the user while the CTI Manager is down, Cisco Unified TSP
generates PHONE_CREATE/LINE_CREATE or PHONE_REMOVE/LINE_REMOVE events,
respectively, when connection to a backup CTI Manager is established.

Cisco Unified TAPI Application Failure

When a Cisco TAPI application fails (the CTI Manager closes the provider), calls at CTI ports and route
points that have not yet been terminated get redirected to the Call Forward On Failure (CFF) number that
has been configured for them. The system routes new calls into CTI Ports and Route Points that are not
opened by an application to their CFNA number.
1-5
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 1 Overview
Cisco Unified TSP Concepts
QoS Support
Cisco Unified TSP supports the Cisco baseline for baselining of Quality of Service (QoS). Cisco Unified
TSP marks the IP DSCP (Differentiated Services Code Point) for QBE control signals that flow from
TSP to CTI with the value of the Service parameter “DSCP IP for CTI Applications” that CTI sends in
the ProviderOpenCompletedEvent. The Cisco TAPI Wave driver marks the RTP packets with the value
that CTI sends in the StartTransmissionEvent. The system stores the DSCP value received in the
StartTransmissionEvent in the DevSpecific portion of the LINECALLINFO structure, and fires the
LINECALLINFOSTATE_DEVSPECIFIC event with the QoS indicator.

Note QoS information is not available if you begin monitoring in the middle of a call because existing calls
do not have an RTP event.

Presentation Indication (PI)
There is a need to separate the presentability aspects of a number (calling, called, and so on) from the
actual number itself. For example, when the number is not to be displayed on the IP phone, the
information might still be needed by another system, such as Unity VM. Hence, each number/name of
the display name needs to be associated with a Presentation Indication (PI) flag, which will indicate
whether the information should be displayed to the user or not.

You can set up this feature as follows:

On a Per-Call Basis

You can use Route Patterns and Translation Patterns to set or reset PI flags for various partyDNs/Names
on a per-call basis. If the pattern matches the digits, the PI settings that are associated with the pattern
will be applied to the call information.

On a Permanent Basis

You can configure a trunk device with “Allow” or “Restrict” options for parties. This will set the PI flags
for the corresponding party information for all calls from this trunk.

Cisco Unified TSP supports this feature. If calls are made via Translation patterns with all of the flags
set to Restricted, the system sends the CallerID/Name, ConnectedID/Name, and RedirectionID/Name to
applications as Blank. The system also sets the LINECALLPARTYID flags to Blocked if both the Name
and Party number are set to Restricted.

When developing an application, be sure only to use functions that the Cisco TAPI Service Provider
supports. For example, the Cisco TAPI Service Provider supports transfer, but not fax detection. If an
application requires an unsupported media or bearer mode, the application will not work as expected.

Cisco Unified TSP does not support TAPI 3.0 applications.

Call Control
You can configure Cisco Unified TSP to provide first- or third-party call control.
1-6
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 1 Overview
Cisco Unified TSP Concepts
First-Party Call Control

In first-party call control, the application terminates the audio stream. Ordinarily, this occurs by using
the Cisco wave driver. However, if you want the application to control the audio stream instead of the
wave driver, use the Cisco device-specific extensions.

Third-Party Call Control

In third-party call control, the control of an audio stream terminating device is not “local” to the Cisco
Unified Communications Manager. In such cases, the controller might be the physical IP phone on your
desk or a group of IP phones for which your application is responsible.

Note Cisco does not support CTI device monitoring or call control with 3rd-party devices.

CTI Port
For first-party call control, a CTI port device must exist in the Cisco Unified Communications Manager.
Because each port can only have one active audio stream at a time, most configurations only need one
line per port.

A CTI port device does not actually exist in the system until you run a TAPI application and a line on
the port device is opened requesting LINEMEDIAMODE_AUTOMATEDVOICE and
LINEMEDIAMODE_INTERACTIVEVOICE. Until the port is opened, anyone who calls the directory
number that is associated with that CTI port device receives a busy or reorder tone.

The IP address and UDP port number is either specified statically (the same IP address and UDP port
number is used for every call) or dynamically. By default, CTI ports use static registration.

Dynamic Port Registration
Dynamic Port Registration enables applications to specify the IP address and UDP port number on a
call-by-call basis. Currently, the IP address and UDP port number are specified when a CTI port registers
and is static through the life of the registration of the CTI port. When media is requested to be established
to the CTI port, the system uses the same static IP address and UDP port number for every call.

An application that wants to use Dynamic Port Registration must specify the IP address and UDP port
number on a call before invoking any features on the call. If the feature is invoked before the IP address
and UDP port number are set, the feature will fail, and the call state will be set depending on when the
media time-out occurs.

CTI Route Point
You can use Cisco Unified TAPI to control CTI route points. CTI route points allow Cisco Unified TAPI
applications to redirect incoming calls with an infinite queue depth. This allows incoming calls to avoid
busy signals.

CTI route point devices have an address capability flag of LINEADDRCAPFLAGS_ROUTEPOINT.
When your application opens a line of this type, it can handle any incoming call by disconnecting,
accepting, or redirecting the call to some other directory number. The basis for redirection decisions can
be caller ID information, time of day, or other information that is available to the program.
1-7
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 1 Overview
Cisco Unified TSP Concepts
Media Termination at Route Point
The Media Termination at Route Point feature lets applications terminate media at route points. This
feature enables applications to pass the IP address and port number where they want the call at the route
point to have media established.

The system supports the following features at route points:

 • Answer

 • Multiple Active Calls

 • Redirect

 • Hold

 • UnHold

 • Blind Transfer

 • DTMF Digits

 • Tones

Monitoring Call Park Directory Numbers
The Cisco Unified TSP supports monitoring calls on lines that represent Call Park Directory Numbers
(Call Park DNs). The Cisco Unified TSP uses a device-specific extension in the LINEDEVCAPS
structure that allows TAPI applications to differentiate Call Park DN lines from other lines. If an
application opens a Call Park DN line, all calls that are parked to the Call Park DN get reported to the
application. The application cannot perform any call control functions on any calls at a Call Park DN.

To open Call Park DN lines, you must check the Monitor Call Park DNs check box in Cisco Unified
Communications Manager User Administration for the Cisco Unified TSP user. Otherwise, the
application will not perceive any of the Call Park DN lines upon initialization.

Multiple Cisco Unified TSPs
In the Cisco Unified TAPI solution, the TAPI application and Cisco Unified TSP get installed on the
same machine. The Cisco Unified TAPI application and Cisco Unified TSP do not directly interface with
each other. A layer written by Microsoft sits between the TAPI application and Cisco Unified TSP. This
layer, known as TAPISRV, allows the installation of multiple TSPs on the same machine, and it hides
that fact from the Cisco Unified TAPI application. The only difference to the TAPI application is that it
is now informed that there are more lines that it can control.

Consider an example—assume that Cisco Unified TSP1 exposes 100 lines, and Cisco Unified TSP2
exposes 100 lines. In the single Cisco Unified TSP architecture where Cisco Unified TSP1 is the only
Cisco Unified TSP that is installed, Cisco Unified TSP1 would tell TAPISRV that it supports 100 lines,
and TAPISRV would tell the application that it can control 100 lines. In the multiple Cisco Unified TSP
architecture, where both Cisco Unified TSPs are installed, this means that Cisco Unified TSP1 would
tell TAPISRV that it supports 100 lines, and Cisco Unified TSP2 would tell TAPISRV that it supports
100 lines. TAPISRV would add the lines and inform the application that it now supports 200 lines. The
application communicates with TAPISRV, and TAPISRV takes care of communicating with the correct
Cisco Unified TSP.
1-8
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 1 Overview
Cisco Unified TSP Concepts
Ensure that each Cisco Unified TSP is configured with a different username and password that you
administer in the Cisco Unified Communications Manager Directory. Configure each user in the
Directory, so devices that are associated with each user do not overlap. Each Cisco Unified TSP in the
multiple Cisco Unified TSP system does not communicate with the others. Each Cisco Unified TSP in
the multiple Cisco Unified TSP system creates a separate CTI connection to the CTI Manager as shown
in Figure 1-3. Multiple Cisco Unified TSPs help in scalability and higher performance.

Figure 1-3 Multiple Cisco Unified TSPs Connect to CTI Manager

CTI Device/Line Restriction
With CTI Device/Line restriction implementation, a CTIRestricted flag is be placed on device or line
basis. When a device is restricted, it assumes that all its configured lines are restricted.

Cisco Unified TSP does not report any restricted devices and lines back to application. When a
CTIRestricted flag is changed from Cisco Unified Communications Manager Administration, Cisco
Unified TSP treats it as normal device/line add or removal.

TAPI application

001
002 003

004Cisco TSP

CTI Manager

Cisco Unified
Communications

Manager

63
10

3

1-9
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 1 Overview
Cisco Unified TSP Concepts
1-10
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

TAPI Developer Guide for Cisc
OL-18532-01
C H A P T E R 2

New and Changed Information

This chapter describes new and changed Cisco Unified TAPI Service Provider (TSP) information for
Cisco Unified Communications Manager release 7.1.(2) and feature supported in the previous releases.
This chapter contains the following sections:

 • Cisco Unified Communications Manager Release 7.1(2), page 2-1

 • Features Supported in Previous Releases, page 2-2

Refer to the programming guides Web site for prior Cisco JTAPI Developer Guides at
http://www.cisco.com/en/US/products/sw/voicesw/ps556/products_programming_reference_guides_
list.html.

Cisco Unified Communications Manager Release 7.1(2)
This section describes new and changed features that are supported in Cisco Unified Communications
Manager Release 7.1(2) and contains the following topics:

 • IPv6 Support—Enables IPv6 capabilities in a Cisco Unified Communications Manager (Unified
CM) network. For more information, see IPv6 Support, page 3-2.

 • Direct Transfer Across Lines Support—Allows the application to directly transfer calls across the
lines that are configured on the device. For more information, see Direct Transfer Across Lines
Support, page 3-2.

 • Message Waiting Indicator Enhancement—The Message Waiting Indicator (MWI) feature
enchancement enables the application to display the following information on the supported phones.
For more information, see Message Waiting Indicator Enhancement, page 3-3.

 • Swap and Cancel Softkey Support—Swap and Control softkey support has been provided the Cisco
Unfied IP Phone 7900 Series. For more information, see Swap and Cancel Softkey Support,
page 3-4.

 • Drop-Any-Party Support—Enables the application to drop any call from the ad-hoc conference. For
more information, see Drop-Any-Party Support, page 3-5.

 • Park Monitoring Support—Allows you to monitor the status of parked calls. For more information,
see Park Monitoring Support, page 3-5.

 • Logical Partitioning Support—Restricts VoIP to PSTN calls and vice versa, based on the logical
partitioning policy. For more information, see Logical Partitioning Support, page 3-7.
2-1
o Unified Communications Manager Release 7.1(2)

http://www.cisco.com/en/US/products/sw/voicesw/ps556/products_programming_reference_guides_list.html
http://www.cisco.com/en/US/products/sw/voicesw/ps556/products_programming_reference_guides_list.html

Chapter 2 New and Changed Information
Features Supported in Previous Releases
 • Support for Cisco Unfied IP Phone 6900 Series—a new user group called Standard allow CTI
control devices with roll-over mode is created. When a user is added to the new user group, the TSP
applications monitor and control the Cisco Unfied IP Phone 6900 series and Cisco Unfied IP Phone
7931 with roll-over mode. For more information, see Support for Cisco Unfied IP Phone 6900
Series, page 3-7.

 • The following Attendant Console versions are supported in Cisco TSP 7.1(2):

 – Cisco Unified Department Attendant Console release 2.0.x, 3.1.x, 8.0.x

 – Cisco Unified Business Attendant Console 2.0.x, 3.1.x, 8.0.x

 – Cisco Unified Enterprise Attendant Console 3.1.x, 8.0.x

 – Arc Enterprise 4.x, 5.x

 – Arc Enterprise Premium 4.x, 5.x

 – Arc Call Connect 4.x, 5.x

Features Supported in Previous Releases
This section describes the features supported in the releases prior to 7.1(2) and contains the following

sections:

 • Cisco Unified Communications Manager Release 7.0(1), page 2-2

 • Cisco Unified Communications Manager Release 6.1(x), page 2-3

 • Cisco Unified Communications Manager Release 6.0(1), page 2-3

 • Cisco Unified Communications Manager Release 5.1, page 2-3

 • Cisco Unified Communications Manager Release 5.0, page 2-4

 • Cisco Unified Communications Manager Release 4.x, page 2-4

 • Cisco Unified Communications Manager Releases Prior to 4.x, page 2-4

Cisco Unified Communications Manager Release 7.0(1)
This section describes new and changed features supported in Cisco Unified Communications Manager
Release 7.0(1) and contains the following:

 • Join Across Lines (SIP), page 3-8

 • Localization Infrastructure Changes, page 3-8

 • Do Not Disturb–Reject, page 3-9

 • Calling Party Normalization, page 3-10

 • Click to Conference, page 3-10

 • Microsoft Windows Vista, page 3-10

Note For the features, Join Across Lines, Do Not Disturb-Reject, and Calling Party Normalization, each TAPI
application must be upgraded to a version that is compatible with these features. Additionally, if you are
upgrading from Release 5.1 and you use Join Across Lines, the Conference Chaining feature must not
2-2
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 2 New and Changed Information
Features Supported in Previous Releases
be enabled or used until all applications are either upgraded to a version compatible with the new CUCM
version. Also, you should verify that the applications are not impacted by the Conference Chaining
feature.

Cisco Unified Communications Manager Release 6.1(x)
This section describes new and changed features that Cisco Unified Communications Manager Release
6.1(x) supports and contains the following topic:

 • Join Across Lines (SCCP), page 3-11

Cisco Unified Communications Manager Release 6.0(1)
This section describes new and changed features that are supported in Cisco Unified Communications
Manager Release 6.0(1), and contains the following topics:

 • Intercom Support, page 3-11

 • Secure Conferencing Support, page 3-12

 • Do Not Disturb, page 3-13

 • Conference Enhancements, page 3-14

 • Arabic and Hebrew Language Support, page 3-15

 • Additional Features Supported on SIP Phones, page 3-16

 • Silent Monitoring, page 3-16

 • Silent Recording, page 3-17

 • Calling Party IP Address, page 3-18

Backward Compatibility

No backward compatibility issues exist for any features that are introduced in Cisco Unified
Communications Manager Release 6.0(1).

Cisco Unified Communications Manager Release 5.1
This section describes new and changed features supported in Cisco Unified Communications Manager,
Release 5.1 and contains the following topics:

 • Partition Support, page 3-18

 • Alternate Script, page 3-19

 • Secure RTP, page 3-19

 • SuperProvider, page 3-20

 • Refer and Replaces for Phones that are Running SIP, page 3-21

 • SIP URL Address, page 3-22

 • 3XX, page 3-22

 • Secure TLS Support, page 3-22
2-3
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 2 New and Changed Information
Features Supported in Previous Releases
 • Monitoring Call Park Directory Numbers, page 3-24

 • Super Provider Support, page 3-24

Cisco Unified Communications Manager Release 5.0
This section describes new and changed features that are supported in Cisco Unified Communications
Manager, Release 5.0, and contains the following topics:

 • Unicode Support, page 3-25

 • Line–Side Phones That Runs SIP, page 3-25

Cisco Unified Communications Manager Release 4.x
This section describes new and changed features that are supported in Cisco Unified Communications
Manager, Release 4.x, and contains the following topics:

Release 4.0

 • Redirect and Blind Transfer, page 3-26

 • Direct Transfer, page 3-27

 • Join, page 3-27

 • Set the Original Called Party upon Redirect, page 3-28

 • Cisco Unified TSP Auto Update, page 3-28

 • Multiple Calls per Line Appearance, page 3-29

 • Shared Line Appearance, page 3-29

 • Select Calls, page 3-30

Release 4.1

 • Forced Authorization Code and Client Matter Code, page 3-30

 • CTI Port Third-Party Monitoring Port, page 3-31

 • Translation Pattern, page 3-31

Cisco Unified Communications Manager Releases Prior to 4.x
The chapter includes the following list of all features that are available in the Cisco Unified TSP
implementation of Cisco Unified Communications Manager, prior to Release 4.x:

 • Forwarding, page 3-31

 • Extension Mobility, page 3-31

 • Directory Change Notification, page 3-32

 • Join, page 3-27

 • Privacy Release, page 3-32

 • Barge and cBarge, page 3-32

 • XSI Object Pass Through, page 3-33
2-4
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 2 New and Changed Information
Features Supported in Previous Releases
 • Silent Install Support, page 3-33
2-5
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 2 New and Changed Information
Features Supported in Previous Releases
2-6
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

TAPI Developer Guide for Cisc
OL-18532-01
C H A P T E R 3

Features Supported by TSP

This chapter describes the features that Cisco Unified TAPI Service Provider (TSP) supports. See
Chapter 2, “New and Changed Information,” for described features, which are listed by Cisco Unified
Communications Manager release.
3-1
o Unified Communications Manager Release 7.1(2)

Chapter 3 Features Supported by TSP
IPv6 Support
The IPv6 support feature enables IPv6 capabilities in a Cisco Unified Communications Manager
(Unified CM) network. IPv6 increases the number of addresses available for network devices. TAPI can
connect to Unified CM with IPv6 support if the IPv6 Support feature is enabled on Unified CM. IPv6
enhancements include the following:

 • Provides the IPv6 address of the calling party to the called partyin theDevspecific part of
LINECALLINFO.

 • Support to register a CTI port or a route point with an IPv6 address. The RTP destination address
also contains IPv6 addresses if the same is involved in media establishment.

The TSP user interface includes the primary and backup CTI Manager address and a flag that indicates
the preference of user while connecting to the CTI Manager. CTI ports and route points can be registered
with IPv4, IPv6, or both.

The following new CiscoLineDevSpecific functions allow the application to specify IP address mode
and IPv6 address before opening CTI port and route point:

 • CciscoLineDevSpecificSetIPv6AddressAndMode

 • CciscoLineDevSpecificSetRTPParamsForCallIPv6

For dynamic port registration, on receiving the SLDSMT_OPEN_LOGICAL_CHANNEL event, the
CciscoLineDevSpecificSetRTPParamsForCallIPv6 allows the application to provide IPv6 information
for the call.

Interface Changes

See Set IP Address Mode, page 6-45 and Set IPv6 Address, page 6-46.

Message Sequences

See IPv6 Use Cases, page A-88.

Backward Compatibility

This feature is backward compatible. The 0x00090000 extension must be negotiated to use this feature.

Direct Transfer Across Lines Support
The Direct Transfer Across Lines feature allows the application to directly transfer calls across the lines
that are configured on the device. The application monitors both the lines when directly transferring the
calls across the lines.

A new LineDevSpecific extension, CciscoLineDevSpecificDirectTransfer, is added to direct transfer
calls across the lines or on the same line. The 0x00090000 extension must be negotiated to use
CciscoLineDevSpecificDirectTransfer.

Interface Changes

See Direct Transfer, page 6-48.

Message Sequences

See Direct Transfer Across Lines, page A-96.
3-2
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 3 Features Supported by TSP
Backward Compatibility

This feature is backward compatible.

Message Waiting Indicator Enhancement
The Message Waiting Indicator (MWI) feature enchancement enables the application to display the
following information on the supported phones:

 • Total number of new voice messages (normal and high priority messages)

 • Total number of old voice messages (normal and high priority messages)

 • Number of new high priority voice messages

 • Number of old high priority voice messages

 • Total number of new fax messages (normal and high priority messages)

 • Total number of old fax messages (normal and high priority messages)

 • Number of new high priority fax messages

 • Number of old high priority fax messages

MWI also includes two CCiscoLineDevSpecific subclasses are added to enhance the MWI functionality.
Similar to the existing setMessageWaiting operation, one MWI operation sets the summary information
for the controlled line, while the another MWI operation sets the message summary information on any
line that is reachable by the controlled line, as defined by the configured calling search space of the
controlled line.

Interface Changes

See Message Summary, page 6-20 and Message Summary Dirn, page 6-22.

Message Sequences

There are no message sequences for this feature.

Backward Compatibility

This feature is backward compatible.
3-3
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 3 Features Supported by TSP
Swap and Cancel Softkey Support
The following softkeys have been added to the Cisco Unfied IP Phone 7900 Series:

 • Swap

 • Cancel

Swap

The Swap softkey can be only be used when you use the Transfer or Conference feature. When you press
Swap, the phone puts the consultative call on hold and resumes the primary call. Swap operation breaks
the internal linkage between the primary and consultative calls, but you can still complete the transfer
or conference operation.

Cancel

When you press Cancel before completing the transfer operation, the TSP receives an event notification
from CTI and cancels any pending transfer or conference requests.

The Swap and Cancel features operate as follows:

 • For swap operation, the primary call state is changed to CONNECTED, and the consult call state is
changed to ONHOLD.

 • For cancel operation, the primary call state is changed to ONHOLD, and consult call state remains
as CONNECTED.

 • To complete the transfer operation after swap or cancel, the application invokes
LineCompleteTransfer or CciscoLineDevSpecificDirectTransfer.

 • To complete the conference operation after swap or cancel, the application invokes Cisco Join API
– CCiscoLineDevSpecificJoin.

When using the Swap and Cancel features, the Cisco Unified IP Phones maintain a consulting
relationship between the primary and the consulting calls, on invoking consult transfer or consult
conference:

 • The Swap operation puts the active call on hold and retrieves the held call.

 • The Cancel operation breaks the consulting relationship between the primary and the consulting
calls.

When users perform the swap operation, the behavior remains the same while resuming calls and all
pending transfer or conference operation are cancelled. Users can swap or toggle during consultative
transfer or conference transactions, and also swap or toggle between call sessions during the transaction
to check the status of each party.

Interface Changes

There are no interface changes for this feature.

Message Sequences

See Swap or Cancel Support, page A-103.

Backward Compatibility

This feature is backward compatible.
3-4
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 3 Features Supported by TSP
Drop-Any-Party Support
The Drop-Any-Party feature enables the application to drop any call from the ad-hoc conference. This
feature is currently supported from the phone interface. The application uses the
LineRemoveFromConference function to drop the call from a conference. When the call is dropped from
a conference, TSP receives CtiDropConferee as the call state change cause, and this is sent to TAPI as
the default cause.

Interface Changes

See lineRemoveFromConference, page 5-44.

Message Sequences

See Drop Any Party, page A-125.

Backward Compatibility

This feature is backward compatible. The 0x00090000 extension is added to maintain backward
compatibility.

Park Monitoring Support
The Park Monitoring feature allows you to monitor the status of parked calls. This feature improves the
user experience of retrieving the parked calls. When TAPI receives a parked call notification, a call
representing the parked call is generated, and the call is set to CONNECTED INACTIVE state. The
parked call is set to IDLE when it is retrieved or forwarded to Park Monitoring Forward No Retrieve
Destination.

DEVSPECIFIC_PARK_STATUS event is sent when call is parked, reminded, retrieved, and aborted.
LineDevSpecific SLDST_SET_STATUS_MESSAGES are enhanced to allow the application to
enable/disable DEVSPECIFIC_PARK_STATUS event.

When Cisco TSP receives the LINE_PARK_STATUS event for the newly parked call, Cisco TSP
simulates a call for each of the newly parked call using the SubID received from the
LINE_PARK_STATUS event, and notifies the application about the new parked call using the
LINE_NEWCALL event.

Cisco TSP uses LINE_CALLSTATE event to notify changes in the park status to the application. The
park status in the LINE_CALLSTATE event can be one of the following:

 • Parked - indicates a call is parked by the TSP monitored Cisco Unified IP phone.

 • Retrieved - indicates a previously parked call is retrieved.

 • Abandoned - indicates a previously parked call is disconnected while waiting to be retrieved.

 • Reminder - indicates the park monitoring reversion timer for the parked call has expired.

 • Forwarded - indicates the parked call has been forwarded to the configured Park Monitoring
Forward No Retrieve destination, or if the FNR destination is not configured, the call is forwarded
back to the parker.

When Cisco TSP receives the LINE_PARK_STATUS event, it maps the existing CALLINFO structure
with the fields received from LINE_PARK_STATUS event. The application then retrieves the updated
structure by invoking lineGetCallInfo.

The mapping of the fields in the LINE_PARK_STATUS event to the LINECALLINFO structure is as
follows:
3-5
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 3 Features Supported by TSP
To maintain the existing behavior of the Park feature for the Cisco Unfied IP Phones running SIP, you
can set the value of the Park Monitoring Forward No Retrieve Destination timer equal to the existing
Call Park Duration timer and leave the Park Monitoring Forward No Retrieve Destination blank.

To override the Park Monitoring feature for the Cisco Unfied IP Phones running SIP, turn off the
DEVSPECIFIC_PARK_STATUS message flag by using the lineDevSpecific
SLDST_SET_STATUS_MESSAGES request.

Interface Changes

See Set Status Messages, page 6-26.

Message Sequences

See Park Monitoring, page A-138.

Backward Compatibility

This feature is backward compatible.

LINE_PARK_STATUS LINECALLINFO-- Description

LineHandle hline Identifies the line handle to which this message
applies

GCID dwcallid Identifies the global call handle to which this
message applies.

TransactionID dwRedirectingName A unique ID that identifies a particular parked call

CallReason dwReason Identifies the call reason.

Park Status dwBearerMode Parked, retrieved, abandoned, reminder,
forwarded -indicates the status of the parked call.

ParkSlotDN dwCallerID The park slot DN.

ParkSlotPartition dwCallerIDName The partition of the park slot DN.

ParkedPartyDN dwCalledID The parked party DN.

ParkedPartyPartition dwCalledIDName The partition of the parked party DN.
3-6
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 3 Features Supported by TSP
Logical Partitioning Support
The Logical Partitioning feature restricts VoIP to PSTN calls and vice versa, based on the logical
partitioning policy. Any request that interconnects a VOIP call to a PSTN call or vice versa in two
different geographical locations fails and the error code is sent back to the applications.

The device, device pool, trunk, and gateway pages now provide configuration to select geo-location
values and construction rules for geo-location strings.

A new enterprise parameter has been added for this feature with the following values:

 • Name: Logical partitioning enabled

 • Values: True or False

 • Default: False

A new error code has been added for this feature:
LINEERR_INVALID_CALL_PARTITIONING_POLICY 0xC000000C

Interface Changes

There are no interface changes for this feature.

Message Sequences

See Logical Partitioning Support, page A-149.

Backward Compatibility

This feature is backward compatible. To maintain earlier behavior, set the logical partitioning enabled
parameter to False.

Support for Cisco Unfied IP Phone 6900 Series
Cisco Unfied IP Phone 6900 Series phones behave similar to theCisco Unfied IP Phone 7931 with
roll-over mode. Both the Cisco Unfied IP Phone 7931 with roll-over mode and the Cisco Unfied IP
Phone6900 Series are currently restricted and you cannot control them from TSP applications.

For the Cisco Unfied IP Phone 6900 series, a new user group called Standard allow CTI control devices
with roll-over mode is created. When a user is added to the new user group, the TSP applications monitor
and control the Cisco Unfied IP Phone 6900 series and Cisco Unfied IP Phone 7931 with roll-over mode.
For the transfer and conference features, the new consult is created on the second line depending on the
roll-over type and maximum calls on the line. On setup transfer or setup conference, the call goes to
ONHOLD state instead of OnholdPendingTransfer or OnholdPendingConference, when the consult call
is rolled over to the second line. The application uses Direct Transfer Across Lines (DTAL) or Join
Across Lines (JAL) to complete the transfer or conference operations.

Interface Changes

There are no interface changes for this feature.

Message Sequences

See Support for Cisco IP Phone 6900 Series, page A-153.

Backward Compatibility

This feature is backward compatible.
3-7
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 3 Features Supported by TSP
To maintain existing behavior, remove the user from the user group, standard allow CTI control devices
with roll-over mode.

Join Across Lines (SIP)
This feature allows two or more calls on different lines of the same device to be joined by using the join
operation. Applications can use the existing join API to perform the task. When the join across line
happens, the consultation call on the different line on which the survival call does not reside will get
cleared, and a CONFERENCED call that represents the consultation call will get created on the primary
line where conference parent is created. This feature should have no impact when multiple calls are
joined on the same line.

This feature is supported both on SCCP and SIP devices that can be controlled by CTI. In addition, this
feature also supports chaining of conference calls on different lines on the same device. Also, a join
across line can be performed on a non-controller (the original conference controller was on a different
device then where the join is being performed) line.

This feature returns an error if one of the lines involved in the Join Across Lines is an intercom line.

Interface Changes

None.

Message Sequences

See Join Across Lines, page A-74.

Backwards Compatibility

This feature is backward compatible.

Localization Infrastructure Changes
Beginning with Release 7.0(1), the TSP localization is automated. The TSP UI can download the new
and updated locale files directly from a configured TFTP server location. As a result of the download
functionality, Cisco TSP install supports only the English language during the installation.

During installation, the user inputs the TFTP server IP address. When the user opens the TSP interface
for the first time, the TSP interface automatically downloads the locale files from the configured TFTP
server and extracts those files to the resources directory. The languages tab in the TSP preferences UI
also provides functionality to update the locale files.

Note To upgrade from Cisco Unified Communications Manager, Release 6.0(1) TSP to Cisco Unified
Communications Manager, Release 7.0(1) TSP, you must ensure that Release 6.0(1) TSP was installed
by using English. If Release 6.0(1) TSP is installed using any language other than English and if the user
upgrades to Release 7.0(1) TSP, then the user must manually uninstall Release 6.0(1) TSP from
Add/Remove programs in control panel and then perform a fresh install of Release 7.0(1) TSP.

Interface Changes

None.
3-8
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 3 Features Supported by TSP
Message Sequences

None.

Backward Compatibility

Only English locale is packaged in Cisco TSP installer. The TSP UI downloads the locale files from the
configured TFTP server. The end user can select the required and supported locale after the installation.

Do Not Disturb–Reject
Do Not Disturb (DND) enhancements support the rejection of a call. The enhancement Do Not
Disturb–Reject (DND–R) enables the user to reject any calls when necessary. Prior to the Cisco Unified
Communications Manager Release 7.0(1), DND was available only with the Ringer Off option. If DND
was set, the call would still get presented but without ringing the phone.

To enable DND–R, access the Cisco Unified Communications Manager Administration phone page or
the user can enable it on the phone.

However, if the call has an emergency priority set, the incoming call is presented on the phone even if
the DND–R option is selected. This will make sure that emergency calls are not missed.

Feature priority is introduced and defined in the “enum type” for making calls or redirecting existing
calls. The priority is defined as:

enum CiscoDoNotDisturbFeaturePriority {
CallPriority_NORMAL=1
CallPriority_URGENT=2
CallPriority_EMERGENCY=3

};

Feature priority introduces LineMakeCall as part of DevSpecific data. Currently the following structure
is supported in DevSpecific data for LineMakeCall:

typedef struct LineParams {
DWORD FeaturePriority;

} LINE_PARAMS;

The new Cisco LineDevSpecific extension, CciscoLineRedirectWithFeaturePriority with type
SLDST_REDIRECT_WITH_FEATURE_PRIORITY, supports redirected calls with feature priority.

Also in a shared line scenario, if one of the lines is DND–R enabled and if the Remote In Use is true,
then it will be marked as connected inactive.

Interface Changes

See lineMakeCall, page 5-34 and Redirect with Feature Priority, page 6-41.

Message Sequences

See Do Not Disturb–Reject, page A-71.

Backward Compatibility

This feature is backward compatible.
3-9
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 3 Features Supported by TSP
Calling Party Normalization
Prior to the Cisco Unified Communication Manager Release 7.0(1), the “+” symbol was not supported.
Also, no support existed for displaying the localized or global number of the caller to the called party on
its alerting display and the entry into its call directories for supporting a callback without the need of an
EditDial.

Cisco Unified Communication Manager Release 7.0(1) adds support for “+” symbol and also the calling
number is globalized and passed to the application. This enables the end user to dial back without using
EditDial. Along with the globalized calling party, the user would also get the number type of the calling
party. This would help the user to know where the call originated, that is, whether it is a SUBSCRIBER,
NATIONAL or INTERNATIONAL number.

Interface Changes

See LINECALLINFO, page 6-6.

Message Sequences

See Calling Party Normalization, page A-67.

Backward Compatibility

This feature is backward compatible.

Click to Conference
Click to Conference capability enables users to create conferences from an Instant Messaging (IM)
application without creating a consult call first. The Cisco TSP treats the feature as an existing
conference model; however, when the conference is created or dropped, the CtiExtendedReason may
come as Click2Conference.

Interface Changes

None.

Message Sequences

See Click to Conference, page A-58.

Backward Compatibility

This feature is backward compatible.

Microsoft Windows Vista
Microsoft Windows Vista operating system supports Cisco TSP client with the following work around:

 • Always perform the initial installation of the Cisco TSP and Cisco Unified Communications
Manager TSP Wave Driver as a fresh install.

 • If a secure connection to Cisco Unified Communications Manager is used, turn off/disable the
Windows Firewall.

 • If Cisco Unified Communications Manager TSP Wave Driver is used for inbound audio streaming,
turn off/disable the Windows Firewall.
3-10
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 3 Features Supported by TSP
 • If Cisco Unified Communications Manager TSP Wave Driver is used for audio streaming, you must
disable all other devices in the Sound, Video, and Game Controllers group.

Join Across Lines (SCCP)
This feature allows two or more calls on different lines of the same device to be joined through the join
operation. Applications can use the existing join API to perform the task. When the join across line
happens, the consultation call on the different line on which the survival call does not reside will get
cleared, and a CONFERENCED call that represents the consultation call will be created on the primary
line where conference parent is created. This feature should have no impact when multiple calls are
joined on the same line.

This feature is supported on SCCP devices that can be controlled by CTI. In addition, this feature also
supports chaining of conference calls on different lines on the same device. Also, a join across line can
be performed on a non-controller line; that is, the original conference controller was on a different device
then where the join is being performed.

Note This feature returns an error if one of the lines that are involved in the Join Across Lines is an intercom
line.

Backwards Compatibility

This feature is backward compatible.

Intercom Support
The Intercom feature allows one user to call another user and have the call automatically answered with
one-way media from the caller to the called party, regardless of whether the called party is busy or idle.

To ensure that no accidental voice of the called party is sent back to the caller, Cisco Unified
Communications Manager implements a ‘whisper’ intercom, which means that only one-way audio from
the caller is connected, but not audio from the called party. The called party must manually press a key
to talk back to the caller. A zip-zip (auto-answer) tone will play to the called party before the party can
hear the voice of the caller. For intercom users to know whether the intercom is using one-way or
two-way audio, the lamp for both intercom buttons appears colored amber for a one-way whisper
Intercom and green for two-way audio. For TSP applications, only one RTP event occurs for the
monitored party: either the intercom originator or the intercom destination, with the call state as whisper,
in the case of a one-way whisper intercom.

TSP exposes the Intercom line indication and Intercom Speeddial information in DevSpecific of
LineDevCap. The application can retrieve the information by issuing LineGetDevCaps. In the
DevSpecific portion, TSP provides information that indicates (DevSpecificFlag =
LINEDEVCAPSDEVSPECIFIC_INTERCOMDN) whether this is the Intercom line. You can retrieve
the Intercom speeddial information in the DevSpecific portion after the partition field.

If a CTI port is used for the Intercom, the application should open the CTI port with dynamic media
termination. TSP returns LINEERR_OPERATIONUNAVAIL if the Intercom line is opened with static
media termination.

Note You cannot use CTI Route Point for the Intercom feature.
3-11
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 3 Features Supported by TSP
The administrator can configure the speed dial and label options from Cisco Unified Communications
Manager Administration. However, the application can issue CciscoLineSetIntercomSpeeddial with
SLDST_LINE_SET_INTERCOM_SPEEDDIAL to set or reset SpeedDial and Label for the intercom
line. The Application setting will overwrite the administrator setting that is configured in the database.
Cisco Unified Communications Manager uses the application setting to make the intercom call until the
line is closed or until the application resets it. In the case of a Communications Manager or CTIManager
failover, CTIManager or Cisco TSP resets the speed dial setting of the previous application. If the
application restarts, the application must reset the speed dial setting; otherwise, Cisco Unified
Communications Manager will use the database setting to make the intercom call. In any case, if
resetting of the speed dial or label fails, the system sends a LINE_DEVSPECIFIC event to indicate the
failure. When the application wants to release the application setting and have the speed dial setting
revert to the database setting, the application can call CCiscoLineDevSpecificSetIntercomSpeedDial
with a NULL value for SpeedDial and Label.

If the speed dial setting is changed, whether due to a change in the database or because the application
overwrites the setting, the system generates a LineDevSpecific event to indicate the change. However,
the application needs to call CCiscoLineDevSpecificSetStatusMsgs with
DEVSPECIFIC_SPEEDDIAL_CHANGED to receive this notification. After receiving the notification,
the application can call LineGetDevCaps to find out the current settings of speed dial and label.

Users can initiate an intercom call by pressing the Intercom button at the originator or by issuing a
LineMakeCall with a NULL destination if Speedial/Label is configured on the intercom line. Otherwise,
LineMakeCall should have a valid Intercom DN.

For an intercom call, a CallAttribute field in LINECALLINFODEVSPECIFIC indicates whether the call
is for the intercom originator or the intercom target.

After the intercom call is established, the system sends a zip-zip tone event to the application as a
tone-changed event.

Users can invoke a TalkBack at the destination in two ways:

 • By pressing the intercom button

 • By issuing CciscoLineIntercomTalkback with SLDST_LINE _INTERCOM_TALKBACK

TSP reports the Whisper call state in the extended call state bit as CLDSMT_CALL_WHISPER_STATE.
If the call is being put on hold because the destination is answering an intercom call by using talk back,
the system reports the call reason CtiReasonTalkBack in the extended call reason field for the held call.

The application cannot set line features, such as set call forwarding and set message waiting, other than
to initiate the intercom call, drop the intercom call, or talk back. After the intercom call is established,
the system limits call features for the intercom call. For the originator, only
LINECALLFEATURE_DROP is allowed. For the destination, the system supports only the
LINECALLFEATURE_DROP and TalkBack features for the whisper intercom call. After the intercom
call becomes two-audio after the destination initiates talk back, the system allows only
LINECALLFEATURE_DROP at the destination.

Speed dial labels support unicode.

Secure Conferencing Support
Prior to release 6.0(1), the security status of each call matched the status for the call between the phone
and its immediately connected party, which is a conference bridge in the case of a conference call. No
secured conference resource existed, so secure conference calls were not possible.
3-12
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 3 Features Supported by TSP
Release 7.0(1) supports a secured conference resource to enable secure conferencing. The secure
conferencing feature lets the administrator configure the Conference bridge resources with either a
non-secure mode or an encrypted signaling and media mode. If the bridge is configured in encrypted
signaling and media mode, the Conference Bridge will register to Cisco Unified Communications
Manager as a secure media resource. This enables the user to create a secure conference session. When
the media streams of all participants who are involved in the conference are encrypted, the conference
exists in encrypted mode. Otherwise, the conference exists in non-secure mode.

The overall conference security status depends on the least-secure call in the conference. For example,
suppose parties A (secure), B (secure), and C (non-secure) are in a conference. Even though the
conference bridge can support encrypted sRTP and is using that protocol to communicate with A and B,
C remains a non-secure phone. Thus, the overall conference security status is non-secure. Even though
the overall conference security status is non-secure, because a secure conference bridge was allocated,
all secure phones (in this case, A and B) will receive sRTP keys. TSP informs each participant about the
overall call security status. The system provides the overall call security level of the conference to the
application in the DEVSPECIFIC portion of LINECALLINFO to indicate whether the conference call
is encrypted or non-secure.

The Secure Conferencing feature uses four fields to present the call security status:

DWORD CallSecurityStatusOffset;
DWORD CallSecurityStatusSize;
DWORD CallSecurityStatusElementCount;
DWORD CallSecurityStatusElementFixedSize;

The offset will point to following structure:

typedef struct CallSecurityStatusInfo
{
 DWORD CallSecurityStatus;
} CallSecurityStatusInfo;

The system updates LINECALLINFO whenever the overall call security status changes during the call
because a secure or non-secure party joins or leaves the conference.

A conference resource gets allocated to the conference creator based on the creator security capability.
If no conference resource with the same security capability is available, the system allocates a
less-secure conference resource to preserve existing functionality.

When a shared line is involved in the secure conference, the phone that has its line in RIU (remote in
use) mode will not show a security status for the call. However, TSP exposes the overall security status
to the application along with other call information for the inactive call. This means that TSP also reports
the OverallSecurityStatus to all RIU lines. The status will match what is reported to the active line.
Applications can decide whether to expose the information to the end user.

Do Not Disturb
The Do Not Disturb (DND) feature lets phone users go into a Do Not Disturb state on the phone when
they are away from their phone or simply do not want to answer incoming calls. The phone softkey DND
enables and disables this feature.

From theCisco Unified Communications Manager user windows, users can select the DND option DNR
(Do Not Ring).

Cisco TSP makes the following phone device settings available for DND functionality:

 • DND Option: None/Ringer off

 • DND Incoming Call Alert: Beep only/flash only/disable
3-13
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 3 Features Supported by TSP
 • DND Timer: a value between 0-120 mins. It specifies a period in minutes to remind the user that
DND is active.

 • DND enable and disable

Cisco TSP includes DND feature support for TAPI applications that negotiate at least extension version
8.0 (0x00080000).

Applications can only enable or disable the DND feature on a device. Cisco TSP allows TAPI
applications to enable or disable the DND feature via the lineDevSpecificFeature API.

Cisco TSP notifies applications via the LINE_DEVSPECIFICFEATURE message about changes in the
DND configuration or status. To receive change notifications, an application must enable the
DEVSPECIFIC_DONOTDISTURB_CHANGED message flag with a lineDevSpecific
SLDST_SET_STATUS_MESSAGES request.

This feature applies to phones and CTI ports. It does not apply to route points.

Conference Enhancements
The Conference feature of Cisco Unified Communication Manager has been enhanced with the
following functions:

 • Allowing a noncontroller to add another party into an ad hoc conference.

Applications can issue the lineGetCallStatus against a CONNECTED call of a noncontroller
conference participant and check the dwCallFeatures before adding another party into the
conference. The application should have the PREPAREADDCONF feature in the dwCallFeatures
list if the participant is allowed to add another party.

 • Allowing multiple conferences to be chained.

Be aware that these features are only available if the 'Advanced Ad-hoc Conference' service parameter
is enabled on the Cisco Unified Communications Manager.

When this service parameter is changed from enabled to disabled, the system no longer allows new
chaining between ad hoc conferences. However, existing chained conferences will stay intact. Any
participant who is brought into the ad hoc conference by a noncontroller before this change will remain
in the conference, but they can no longer add a new participant or remove an existing participant.

To avoid ad hoc conference resources remaining connected together after all real participants have left,
Cisco Unified Communications Manager will disallow having more than two conference resources
connected to the same ad hoc conference. However, using a star topology to connect multiple
conferences could yield better voice quality than a linear topology. A new advanced service parameter,
'Non-linear Ad Hoc Conference Linking Enabled', lets an administrator select the star topology.

A participant can use the conference, transfer, or join commands to chain two conferences together.
When two conferences are chained together, each participant only sees the participants from their own
conference, and the chained conference appears as a participant with a unique conference bridge name.
In other words, participants do not have a full view of the chained conference. The system treats the
conferences as two separate conferences, even though all the participants are talking to each other.

Figure 3-1 shows how TSP presents a conference model in the case of conference chaining. A, B, and C
are in conference-1, and C, D, and E are in conference-2. C has an ONHOLD call on conference-1 and
an active call on conference-2.
3-14
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 3 Features Supported by TSP
Figure 3-1 Conference Before Join

C then does a join with the primary call from conference-1. For A, B, and C, the conference participants
comprise A, B, C, and conference-2. For D and E, the conference participants comprise D, E, and
conference-1.

Figure 3-2 Conference After Join

When a user removes a CONFERENCE from its conference list on the phone, the operation actually
drops the chained conference bridge. In the previous example, the two chained conferences have been
unchained. Conference-1 will remain active and has A, B, and C as participants. However, conference-2
will become a direct call between Dave and Ed because they are the only two parties left in the
conference.

Applications can achieve conference chaining by issuing a JOIN or TRANSFER on two separated
conference calls. However, a LineCompleteTransfer with a conference option will fail due to a Microsoft
TAPI limitation on this standard API. The application can use the Cisco LineDevSpecific extension to
issue the join request to chain multiple conferences together.

Arabic and Hebrew Language Support
Users can select Arabic and Hebrew languages during installation and also in the Cisco TSP settings user
interface.

IP

Alice
1000

IP

Bob
1001

IP

Carol
1002

controller

Conference
Bridge 1

IP

Dave
1003

IP

Ed
1004

controller

Conference
Bridge 2

2
1

0
7

9
4

IP

Alice
1000

IP

Bob
1001

IP

Carol
1002

controller

Conference
Bridge 1

IP

Dave
1003

IP

Ed
1004

controller

Conference
Bridge 2

2
1

0
7

9
5

3-15
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 3 Features Supported by TSP
Additional Features Supported on SIP Phones
Cisco Unified Communications Manager extends support for phones that are running SIP with these new
features:

 • PhoneSetLamp (but only for setting the MWI lamp)

 • PhoneSetDisplay

 • PhoneDevSpecific (CPDST_SET_DEVICE_UNICODE_DISPLAY)

 • LineGenerateTone

 • Park and UnPark

 • The LINECALLREASON_REMINDER reason for CallPark reminder calls

 • PhoneGetDisplay (but only after a PhoneSetDisplay)

Note TSP does not pass unicode name for phones that are running SIP.

Silent Monitoring
Silent monitoring is a feature that enables a supervisor to eavesdrop on a conversation between an agent
and a customer without the agent detecting the monitoring session. TSP provides monitoring type in line
DevSpecific request for applications to monitor calls on a per call basis. Both monitored and monitoring
party have to be in controlled list of the user.

The Application is required to send permanent lineID, monitoring Mode and toneDirection as input to
CCiscoLineDevSpecificStartCallMonitoring. Only silent monitoring mode is supported and the
supervisor cannot talk to the agent.

The Application can specify if a tone should be played when monitoring starts. ToneDirection can be
none (no tone played), local (tone played to Agent only), remote (tone played to Customer and
Supervisor), both local and remote (tone played to agent, customer, and supervisor).

enum PlayToneDirection
{
 PlayToneDirection_LocalOnly = 0,
 PlayToneDirection_RemoteOnly,
 PlayToneDirection_BothLocalAndRemote,
 PlayToneDirection_NoLocalOrRemote
};

Monitoring of call which is in connected state on that line will start if the request is successful. This will
result in a new call between supervisor and agent. However, the call will be automatically answered with
Built-in Bridge (BIB) and agent is not be aware of the call. The call established between supervisor and
agent will be one-way audio call. Supervisor will get the mixed stream of agent and customer voices.
The application can only invoke the monitoring session for a call after it becomes active.

TSP will send LINE_CALLDEVSPECIFIC (SLDSMT_MONITORING_STARTED) event to the agent
call when supervisor starts monitoring the call. TSP will provide monitored party’s call attribute
information (deviceName, DN, Partition) to the monitoring party in DEVSPECIFIC portion of
LINECALLINFO after monitoring has started. Similarly, TSP will provide monitoring party’s call
attribute information (deviceName, DN, Partition) to the monitored party in devspecific data of
LINECALLINFO after monitoring has started.
3-16
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 3 Features Supported by TSP
The monitoring session will be terminated when the agent-customer call is ended by either the agent or
the customer. The supervisor can also terminate the monitoring session by dropping the monitoring
call.TSP will inform agent by sending LINE_CALLDEVSPECIFIC
(SLDSMT_MONITORING_ENDED) when supervisor drops the call. The event will not be sent if
monitoring session has been ended after agent dropped the call.

Silent Recording
Call recording is a feature that provides two ways of recording the conversations between the agent and
the customer: the automatic call recording and the application invoked selective call recording. A line
appearance configuration determines which mode is enabled. Administrators can configure no
recording, automatically record all calls or per call based recording through application control. The
recording configuration on a line appearance cannot be overridden by an application. TSP will report
‘Recording type’ info to app in devSpecificData of LineDevCaps structure. Whenever there is a change
in ‘Recording Type’, TSP will send LINE_DEVSPECIFIC (SLDSMT_LINE_PROPERTY_CHANGED
with indication of LPCT_RECORDING_TYPE) event to application.

If the automatic call recording is enabled, a recording session will be triggered whenever a call is
received or initiated from the line appearance. When the application invoked call recording is enabled,
application can start a recording session by using CCiscoLineDevSpecificStartCallRecording
(SLDST_START_CALL_RECORDING) on the call after it becomes active. The selective recording can
occur in the middle of the call, whereas the automatic recording always starts at the beginning of the
call.The recorder is configured in CallManager as a SIP trunk device. Recorder DN can not be
overridden by an application.

TSP will provide start recording request in lineDevSpecific to app for establishing a recording session.
Application need to provide toneDirection as input to TSP in the start recording request. The result of
the recording session is that the two media streams of the recorded call (agent-customer call) is being
relayed from agent’s phone to the recorder. TSP will provide agent’s CCM Call Handle in the
devSpecificData of LINECALLINFO.

TSP will inform application when recording starts on its call by sending LINE_CALLDEVSPECIFIC
(SLDSMT_RECORDING_STARTED) event. TSP will provide recording call attribute info
(deviceName, DN, Partition) in devspecific data of LINECALLINFO after recording starts.

The recording session will be terminated when the call is ended or if app sends stop recording request
to TSP through lineDevSpecific – CciscoLineDevSpecificStopCallRecording
(SLDST_STOP_CALL_RECORDING).TSP will inform agent by sending LINE_CALLDEVSPECIFIC
(SLDSMT_RECORDING_ENDED) when recording is stopped by stop recording request.

Both recording and monitoring get supported only for IP phones/CTI supported phones that are running
SIP and within one cluster. It can be invoked only on phones that support built in bridges. Also built in
bridge should be turned on to monitor or record calls on a device. Monitoring party does not need to have
a BIB configured. Recording and monitoring will not be supported for secure calls in this phase.

Call Attributes

Call Attributes can be found in DEVSPECIFIC porting of LINECALLINFO structure. The Call
Attribute Info is presented in the format of an array since Silent Monitoring and Recoding could happen
at the same time.

DWORD CallAttrtibuteInfoOffset;
 DWORD CallAttrtibuteInfoSize;
 DWORD CallAttrtibuteInfoElementCount;
DWORD CallAttrtibuteInfoElementFixedSize;

Offset pointing to array of the following structure:
3-17
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 3 Features Supported by TSP
typedef struct CallAttributeInfo
{
 DWORD CallAttributeType;
 DWORD PartyDNOffset;
 DWORD PartyDNSize;
 DWORD PartyPartitionOffset;
 DWORD PartyPartitionSize;
 DWORD DeviceNameOffset;
 DWORD DeviceNameSize;
}CallAttributeInfo;

enum CallAttributeType

{
CallAttribute_Regular = 0,
CallAttribute_SilentMonitorCall,
CallAttribute_SilentMonitorCall_Target,
CallAttribute_RecordedCall

} ;

Calling Party IP Address
The Calling Party IP Address feature provides the IP address of the calling party. The calling party
device, which must be supported, must be an IP phone. The IP address is provided to applications in the
devspecific data of LINECALLINFO. A value of zero (0) indicates that the information in not available.

The enhancement provides the IP address to the destination side of basic calls, consultation calls for
transfer and conference, and basic redirect and forwarding. If the calling party changes, no support is
provided.

Message Sequence

See Calling Party IP Address, page A-57.

Partition Support
The CiscoTSP support of this feature will provide Partition support information. Prior to release 5.1,
CiscoTSP only reported partial information about the DNs to the applications in that it would report the
numbers assigned but not the information about the partitions with which they were associated.

Thus, if a phone has two lines that are configured with same DNs – one in Partition P1 and the other in
P2, a TSP application would cannot distinguish between these two and consequently open only one line
of these two.

CiscoTSP provides the partition information about all DNs to the applications. Thus, the preceding
limitation gets overcome and applications can distinguish between and open two lines on a device, which
share the same DN but belong to different partitions.

TSP applications can query for LINEDEVCAPS where the partition information is stored in the
devSpecific portion of the structure. Application will receive the Partition info for the CallerID,
CalledID, ConnectedID, RedirectionID, and RedirectingID in a call. This gets provided as a part of
DevSpecific Portion of the LINECALLINFO structure.

Also, the Partition info of the Call Park DN at which the call was parked will also be sent to the
applications. The value of the partition info gets sent to applications in ASCII format.
3-18
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 3 Features Supported by TSP
Note Opening of a line from the application point of view remains unchanged.

Alternate Script
Certain IP phone types support an alternate language script other than the default script that
corresponding to the phone configurable locale. For example, the Japanese phone locale associates two
written scripts. Some phone types support only the default “Katakana” script, while other phones types
support both the default “Katakana” script and the alternate “Kanji” script. Because applications can
send text information to the phone for display purposes, they need to know what alternate script a phone
supports – if any.

Secure RTP
The secure RTP (SRTP) feature allows Cisco TSP to report SRTP information to application as well as
allow application to specify SRTP algorithm IDs during device registration. The SRTP information that
Cisco TSP provides will include master key, master salt, algorithmID, isMKIPresent, and keyDerivation.
To receive those key materials, administrator needs to configure TLS Enabled and SRTP Enabled flag in
Cisco Unified Communications Manager Admin User windows and establish TLS link between TSP and
CTIManager.

Besides, during device registration, application can provide SRTP algorithm IDs for CTI port and CTI
Route Point in case of media termination by application. Application should use new Cisco extension
for Line_devSpecific - CciscoLineDevSpecificUserSetSRTPAlgorithmID to set supported SRTP
algorithm IDs after calling LineOpen with 0x80070000 version or higher negotiated, then followed by
either CCiscoLineDevSpecificUserControlRTPStream or
CciscoLineDevSpecificPortRegistrationPerCall to allow TSP to open device on CTI Manager.

When call arrives on an opened line, TSP will send LINE_CALLDEVSPECIFIC event to application
with secure media indicator; then, application should query LINECALLINFO to get detail SRTP
information if SRTP information is available. The SRTP information resides in the DevSpecific portion
of the LINECALLINFO structure.

In case of mid-call monitoring, Cisco TSP will send LINE_CALLDEVSPECIFIC with secure media
indicator, however there will be no SRTP info available for retrieval under this scenario. The event is
only sent upon application request via PhoneDevSpecific with
CPDST_REQUEST_RTP_SNAPSHOT_INFO message type.

To support SRTP that is using static registration, a generic mechanism for delayed device/line now
exists. The following ones apply:

 • Extension version bit SELSIUSTSP_LINE_EXT_VER_FOR_DELAYED_OPEN = 0x40000000

 • CiscoLineDevSpecificType - SLDST_SEND_LINE_OPEN

 • CCiscoLineDevSpecific - CciscoLineDevSpecificSendLineOpen

If application negotiates with 0x00070000 in lineOpen against CTI port, TSP will do
LineOpen/DeviceOpen immediately. If application negotiates with 0x40070000 in LineOpen against
CTI port, TSP will delay the LineOpen/DeviceOpen. Application can specify SRTP algorithm ID by
using CciscoLineDevSpecificUserSetSRTPAlgorithmID
(SLDST_USER_SET_SRTP_ALGORITHM_ID). However, to trigger actual device/line open in TSP,
application needs to send CciscoLineDevSpecificSendLineOpen(SLDST_SEND_LINE_OPEN)
3-19
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 3 Features Supported by TSP
If application negotiates with 0x80070000 in LineOpen against CTI port/RP, TSP will delay the
LineOpen/DeviceOpen until application specifies media information in CCiscoLineDevSpecific;
however, application can use CciscoLineDevSpecificUserSetSRTPAlgorithmID
(SLDST_USER_SET_SRTP_ALGORITHM_ID) to specify SRTP algorithm ID before specifying the
media information.

If application negotiates with 0x40070000 in LineOpen against RP, TSP should fail
CciscoLineDevSpecificUserSetSRTPAlgorithmID (SLDST_USER_SET_SRTP_ALGORITHM_ID)
request because RP should have media terminated by application.

Currently, the SELSIUSTSP_LINE_EXT_VER_FOR_DELAYED_OPEN bit only gets used on CTI port
when TSP Wave Driver is used to terminate media. Under conference scenario, the SRTP information
gets stored in conference parent call for each party. An application that negotiates with correct version
and interested in SRTP info in conference scenario should retrieve SRTP information from
CONNECTED call of particular conference party.

Backwards Compatibility

CCiscoLineDevSpecific extension

CciscoLineDevSpecificUserSetSRTPAlgorithmID is defined.

CCiscoLineDevSpecific extension CciscoLineDevSpecificSendLineOpen is defined. An extra
LINE_CALLDEVSPECIFIC event gets sent if negotiated version of application supports this feature
while keeping existing LINE_CALLDEVSPECIFIC for reporting existing RTP parameters.

Wave driver (media terminating endpoint) uses the strip_policy to create a crypto context. It should
match the encrypt and decrypt packets sent/received by IPPhones/CTIPorts. Phone uses one hardcoded
srtp_policy for all phone types including phones that are using SIP.

 policy->cipher_type = AES_128_ICM;

 policy->cipher_key_len = 30;

 policy->auth_type = HMAC_SHA1;

 policy->auth_key_len = 20;

 policy->auth_tag_len = 4;

 policy->sec_serv = sec_serv_conf_and_auth;

Note Applications should not store key material and must use proper security method to ensure confidentially
of the key material. Application should clear out memory after key info is processed. Be aware that
applications are subject to export control when they provide mechanism to encrypt the data (SRTP).
Applications should get export clearance for that.

SuperProvider
SuperProvider functionality allows a TSP application to control any CTI-controllable device in the
system (IP Phones, CTI Ports, CTI Route Points and so on). Normally, a TSP application must have an
associated list of devices that it can control. It cannot control any devices that are outside this list;
however, certain applications would want to control a large number (possibly all) the CTI controllable
devices in the system.

SuperProvider functionality enables the administrator to configure a CTI application as a SuperProvider.
This will mean that particular application can control absolutely any CTI controllable device in the
system.
3-20
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 3 Features Supported by TSP
The SuperProvider functionality never gets exposed to TSP apps; that is, TSP application needed to have
the device in the controllable list. In release 5.1 and later, TSP apps can control any CTI-controllable
device in the Unified CM system.

The SuperProvider apps need to explicitly ‘Acquire’ the device before opening them. TSP exposes new
interfaces to the apps to explicitly Acquire/Deacquire any device in the system. The device info will get
fetched for the explicitly acquired device by using the SingleGetInfoFetch API exposed via QBE by CTI.
Later, TSP will fetch the line info for this device by using the LineInfoFetch API. The lines of this device
will get reported to the app by using the LINE_CREATE/PHONE_CREATE events.

The apps can explicitly ‘De-Acquire’ the device. After the device is successfully de-acquired, TSP will
fire LINE_REMOVE/PHONE_REMOVE events to the apps.

TSP also supports Change Notification of “Super-Provider” flag. If the administrator has configured a
User as a “Super-Provider” in the Unified CM Administration, the status of this changes and the user no
longer represents a Super-Provider, then CTI will inform TSP in ProviderUserChangedEvent. If any
device had been explicitly acquired and opened in super-provider mode, TSP will fire
PHONE_REMOVE/LINE_REMOVE to the app and indicates that the device/line is no longer available
for the app to use.

In release 5.1 and later, TSP supports change notification of CallParkDN Monitoring as well. If the user
has been configured to allow monitoring of CallParkDN in the Unified CM Administration, the status of
this flag is disabled. Then TSP will fire LINE_REMOVE for the CallParkDNs.

If the CallParkDN Monitoring is disabled, the status changes to enabled, TSP fetches all the
CallParkDNs from CTI and fire LINE_CREATE for each of the CallParkDNs.

Refer and Replaces for Phones that are Running SIP
As part of CTI support for phones that are running SIP, TSP will support new SIP features Refer and
Replaces. Refer, Refer with Replaces, Invite with Replaces represent different mechanisms to initiate
different call control features. For example, Refer with Replaces in SIP terms can be translated to
Transfer operation in Unified CM. Invite with Replaces can be used for Pickup call feature across SIP
trunks. TSP will support event handling corresponding to the features that are initiated by Unified CM
phones that are running SIP / third party phones that are running SIP. TSP will not support Refer /
Replaces request initiation from the API. Because TAPI does not have Refer/Replaces feature related
reason codes defined, the standard TAPI reason will be LINECALLREASON_UNKNOWN. TSP will
provide new call reason to user as part of LINE_CALLINFO::dwDevSpecificData if the application
negotiated extension version greater or equal to 0x00070000.

For In-dialog refer, TSP places Referrer in LINECALLSTATE_UNKNOWN |
CLDSMT_CALL_WAITING_STATE call state with extended call reason as CtiCallReasonRefer. This
helps present the Referrer’s call leg such that applications cannot call any other call functions on this
call. Any request on this call when it is in LINECALLSTATE_UNKNOWN | CLDSMT_CALL_
WAITING_STATE will return an error as LINEERR_INVALCALLSTATE.

The Referrer must clear this call after the Refer request is initiated. If Referrer does not drop the call,
Refer feature will clear this call if the refer is successful. LINECALLSTATE_IDLE with extended
reason as CtiCallReasonRefer will get reported.

If Referrer does not drop the call and if Refer request fails (For example, Refer to target is busy), refer
feature will restore the call between Referrer and Referee.
3-21
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 3 Features Supported by TSP
With Unified CM Phones that are running SIP, Unified CM makes all the existing call features
transparent such that applications will get the existing events when the phone invokes a SIP feature
whose behavior matches with the existing feature of Unified CM. For example, when Refer with
Replaces is called by a phone that runs SIP (with both primary and secondary/consult call legs on same
SIP line) within Unified CM cluster, all the events will get reported the same as Transfer feature.

SIP URL Address
As part of CTI support for phones that are using SIP, TSP will expose SIP URL that is received in
Device/Call event that is received from CTIManager. The SIP URL will get presented for each
corresponding party in extended call info structure of LINE_CALLINFO::dwDevSpecificData.

When a SIP trunk is involved in a call, the DN may not get presented in party information. Application
then needs to consider SIP URL information under this call scenario for information.

TSP will provide SIP URL information to user as part of LINE_CALLINFO::dwDevSpecificData if the
application negotiated extension version greater than or equal to 0x00070000.

CTI phones that are running SIP support the following features or functions:

 • Call Initiate

 • Call Answer

 • Call Close/Disconnect

 • Consult Transfer

 • Direct Transfer

 • Call Join

 • Conference

 • Hold/unhold

 • Line Dial

 • Redirect

 • lineDevSpecific (SLDST_MSG_WAITING)

 • lineDevSpecific (SLDST_MSG_WAITING_DIRN)

3XX
Cisco TSP maps the CTI reason code for 3XX to REDIRECT. When a call arrives on a monitored line
due to 3XX feature, the call reason for the incoming call will get REDIRECT in this case. No interface
change for TSP 3XX support.

Backward Compatibility

This feature is backward compatible.

Secure TLS Support
Establishing secure connection to CTIManager involves application user to configure more information
through Cisco TSP UI. This information will help TSP to create its own client certificate. This certificate
is used to create a mutually authenticated secure channel between TSP and CTIManager.
3-22
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 3 Features Supported by TSP
TSP UI adds a new tab called Security and the options that are available on this tab follows:

 • Check box for Secure Connection to CTIManager: If checked, TSP will connect over TLS CTIQBE
port (2749); otherwise, TSP will connect over CTIQBE port (2748).

 • Default setting specifies non secure connection and the setting will remain unchecked.

Ensure that the security flag for the TSP user is enabled through Cisco Unified Communications
Manager Administration as well. CTIManager will perform a verification check whether a user who is
connecting on TLS is allowed to have secure access. CTIManager will allow only security enabled users
to connect to TLS port 2749 and only non secure users to connect to CTIQBE port 2748.

The user flag to enable security depends on the cluster security mode. If cluster security mode is set to
secure, user security settings will have a meaning; otherwise, the connection has to be non secure. If
secure connection to CTIManager is checked, the following settings will get enabled for editing.

 • CAPF Server: CAPF server IP address from which to fetch the client certificate.

 • CAPF Port: (Default 3804) – CAPF Server Port to connect to for Certificate download.

 • Authorization Code (AuthCode): Required for Client authentication with CAPF Server and Private
Key storage on client machine.

 • Instance ID(IID): Each secure connection to CTIManager must have its own certificate for
authentication. With the restriction of having a distinct certificate per connection, CAPF Server
needs to verify that the user with appropriate AuthCode and IID is requesting the certificate. CAPF
server will use AuthCode and IID to verify the user identity. After CAPF server provides a
certificate, it clears the AuthCode to make sure only one instance of an app requests a certificate
based on a single AuthCode. CCM admin will allow user configuration to provide multiple IID and
AuthCode.

 • TFTP Server: TFTP server IP address to fetch the CTL file. CTL, which file is required to verify the
server certificate, gets sent while mutually authenticating the TLS connection.

 • Check box to Fetch Certificate: This setting is not stored anywhere, instead only gets used to update
the Client certificate when it is checked and will get cleared automatically.

 • Number of Retries for Certificate Fetch: This indicates the number of retries TSP will perform to
connect to CAPF Server for certificate download in case an error. (Default - 0) (Range – 0 to 3)

 • Retry Interval for Certificate Fetch: This will be used when the retry is configured. It indicates the
(secs) for which TSP will wait during retries. (Default – 0) (Range – 0 to 15)

Because user is not expected to update the client certificate every time it changes, TSP UI will pop up a
message when this box is checked by user that says “This will trigger a certificate update. Please make
sure that you really want to update the TSP certificate now.” This will ensure that if user selects this
check box in an error. TSP will fail to establish a secure connection to CTIManager if a valid certificate
cannot be obtained. Each secure connection to CTIManager needs to have a unique certificate for
authentication.

If an application tries to create more than one Provider simultaneously with the same certificate or when
a session with the same certificate already exists/is open, CTI Manager disconnects both providers. TSP
will try reconnecting to CTIManager to bring the provider in service. However, if both providers
continuously try to connect by using the same duplicated certificate, both providers will be closed after
a certain number of retries, and the certificate will be marked as compromised by CTIManager on
Unified CM server. The number of retries after which the certificate should be marked as compromised
is configurable from the CTIManager Service Parameter “CTI InstanceId Retry Count.” CTI manager
rejects further attempt to open provider with the certificate that is compromised. In this case, the CAPF
profile of the compromised certificate should be deleted and a new CAPF Profile must be created for the
user. The new CAPF profile for the user should use new instance ID. Otherwise, the old certificate, which
was compromised previously, can be used again.
3-23
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 3 Features Supported by TSP
A new error code, TSPERR_INIT_CERTIFICATE_COMPROMISED, with value as 0x00000011 where
TSPERR_UNKNOWN is 0x00000010 now exists. Application should not have checks like “if (err <
TSPERR_UNKNOWN))” because error codes exists that have a value greater than that.

When TLS is used, the initial handshake will be slow as expected due to heavy use of public key
cryptography. After the initial handshake is complete and the session is established, the overhead gets
significantly reduced. The following profiling result applies on ProviderOpen for both secure and
non-secure CTI connection.

Monitoring Call Park Directory Numbers
Cisco TSP supports monitoring calls on lines that represent Cisco Unified Communications Manager
Administration Call Park Directory Numbers (Call Park DNs). Cisco TSP uses a device-specific
extension in the LINEDEVCAPS structure that enables TAPI applications to differentiate Call Park DN
lines from other lines. If an application opens a Call Park DN line, all calls that are parked to the Call
Park DN are reported to the application. The application cannot perform any call-control functions on
any of the calls at a Call Park DN.

In order to open Call Park DN lines, the Monitor Call Park DNs check box in the Cisco Unified
Communications Manager Administration for the TSP user must be checked. Otherwise, the application
will not see any of the Call Park DN lines upon initialization.

Super Provider Support
The Super Provider functionality allows a TSP application to control any CTI controllable device in the
system (IP Phones, CTI Ports, CTI Route Points etc). The TSP application has to have an associated list
of devices that it can control. It cannot control any devices that are outside of this list. However, certain
applications would want to control a large number (possibly all) of the CTI controllable devices in the
system. Super Provider enables the administrator to configure a CTI application as a “Super-Provider.”
This will mean that particular application can control absolutely any CTI controllable device in the
system.

Previously, the Super Provider functionality was never exposed to TSP apps, that is the TSP application
needed to have the device in the controllable list. In this release, TSP apps can control any CTI
controllable device in the CallManager system. The Super-Provider apps need to explicitly “Acquire”
the device before opening them.

Controlled
Devices

Type of CTI
Connection

Duration on
ProviderOpen

Duration on
OpenAllLines Comments

0 Non-Secure 1 sec 382 ms N/A

Secure 4 sec 987 ms N/A With certificate retrieval.

Secure 3 sec 736 ms N/A

100 Non-secure 1 sec 672 ms 3 sec 164ms

Secure 5 sec 758 ms 3 sec 445ms

2500 Non-Secure 29 sec 513 ms 3 min 26 sec
728 ms

Secure 34 sec 219 ms 3 min 26 sec
928 ms
3-24
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 3 Features Supported by TSP
TSP exposes new interfaces to the apps to explicitly Acquire/Deacquire any device in the system. The
device info will be fetched for the explicitly acquired device using the SingleGetInfoFetch API exposed
via QBE by CTI. Later, TSP will fetch the line info for this device using the LineInfoFetch API. The
lines of this device will be reported to the app using the LINE_CREATE/PHONE_CREATE events.

The apps can explicitly 'De-Acquire' the device. After the device is successfully de-acquired, TSP will
fire LINE_REMOVE/PHONE_REMOVE events to the apps.

TSP also supports Change Notification of "Super-Provider" flag. If the administrator has configured a
User as a "Super-Provider" in the admin pages, then the status of this is changed and the user is no more
a Super-Provider, then CTI will inform the same to TSP in ProviderUserChangedEvent.

If any device had been explicitly acquired and opened in super-provider mode, then TSP will fire
PHONE_REMOVE/LINE_REMOVE to the app indicating that the device/line is no more available for
the app to use.

In this release, TSP supports change notification of CallParkDN Monitoring as well. Say, the user has
been configured to allow monitoring of CallParkDN in the admin pages, now the status of this flag is
disabled. Then TSP will fire LINE_REMOVE for the CallParkDNs.

Say, initially the CallParkDN Monitoring is disabled, now the status is changed to enabled, then TSP
will fetch all the CallParkDNs from CTI and fire LINE_CREATE for each of the CallParkDNs.

Unicode Support
Cisco TSP supports unicode character sets. TSP will send unicode party names to the application in all
call events. The party name needs to be configured in Cisco Unified Communications Manager
Administration. This support is limited to only party names. The locale information also gets sent to the
application. The UCS-2 encoding for unicode gets used.

The party names will exist in the DevSpecific portion of the LINECALLINFO structure. In SIP call
scenarios, where a call comes back into Unified CM from SIP proxy over a SIP trunk, only ASCII name
will get passed because SIP has no way of populating both ASCII and unicode. As the result, the
Connected and Redirection Unicode Name will get reported as empty to application.

Line–Side Phones That Runs SIP
TSP supports controlling and monitoring of TNP-based phones that are running SIP. Existing phones
(7960 and 7940) that are running SIP cannot be controlled or monitored by the TSP and should not get
included in the control list. Though the general behavior of a phone that is running is similar to a phone
that is running SCCP not all TSP features get supported for phones that are running SIP.

CCiscoPhoneDevSpecificDataPassThrough functionality does not support on phones that are running
SIP configured with UDP transport due to UDP limitations. Phones that are running SIP must be
configured to use TCP (default) if the CCiscoPhoneDevSpecificDataPassThrough functionality is
needed.

TSP application registration state for TNP phones that are running SIP with UDP as transport may not
remain consistent to the registration state of the phone. TNP phone that are running SIP with UDP as
transport may appear to be registered when application reports the devices as out of service. This may
happen when CTIManager determines that Unified CM is down and puts the device as out of service,
but, because of the inherent delay in UDP to determine the lost connectivity, phone may appear to be in
service.
3-25
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 3 Features Supported by TSP
The way applications open devices and lines on phones that are running SIP remains the same as that of
phone that is running SCCP. It is the phone that controls when and how long to play reorder tone. When
a SIP phone gets a request to play reorder tone, the phone that is running SIP releases the resources from
Unified CM and plays reorder tone. The call appears to be IDLE to a TSP application even though
reorder tone is being played on the phone. Applications can still receive and initiate calls from the phone
even when reorder tone plays on the phone. Because resources have been released on Unified CM, this
call does not count against the busy trigger and maximum number of call counters.

When consult call scenario is invoked on the SIP, the order of new call event (for consult call) and on
hold call state change event (for original call).

Redirect and Blind Transfer
The Cisco Unified TSP supports several different methods of Redirect and Blind Transfer. This section
outlines the different methods as well as the differences between methods.

lineRedirect

This standard TAPI lineRedirect function redirects calls to a specified destination. The Calling Search
Space and Original Called Party that Cisco Unified TSP uses for this function follows:

 • Calling Search Space (CSS) — Uses CSS of the CallingParty (the party being redirected) for all
cases unless the call is in a conference or a member of a two-party conference where it uses the CSS
of the RedirectingParty (the party that is doing the redirect).

 • Original Called Party — Not changed.

lineDevSpecific – Redirect Reset Original Called ID

This function redirects calls to a specified destination while resetting the Original Called Party to the
party that is redirecting the call. The Calling Search Space and Original Called Party that Cisco Unified
TSP uses for this function follow:

 • Calling Search Space (CSS) — Uses CSS of the CallingParty (the party being redirected).

 • Original Called Party — Set to the RedirectingParty (the party that is redirecting the call).

lineDevSpecific – Redirect Set Original Called ID

This function redirects calls to a specified destination while allowing the application to set the Original
Called Party to any value. The Calling Search Space and Original Called Party that Cisco Unified TSP
uses for this function follow:

 • Calling Search Space (CSS) — Uses CSS of the CallingParty (the party being redirected).

 • Original Called Party — Set to the preferredOriginalCalledID that the lineDevSpecific function
specifies.

You can use this request to implement the Transfer to Voice Mail feature (TxToVM). Using this feature,
applications can transfer the call on a line directly to the voice mailbox on another line. You can achieve
TxToVM by specifying the following fields in the above request: voice mail pilot as the destination DN
and the DN of the line to whose voice mail box the call is to be transferred as the
preferredOriginalCalledID.
3-26
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 3 Features Supported by TSP
lineDevSpecific – Redirect FAC CMC

This function redirects calls to a specified destination that requires either a FAC, CMC, or both. The
Calling Search Space and Original Called Party that Cisco Unified TSP uses for this function follow:

 • Calling Search Space (CSS) — Uses CSS of the CallingParty (the party being redirected).

 • Original Called Party — Not changed.

lineBlindTransfer

Use the standard TAPI lineBlindTransfer function to blind transfer calls to a specified destination. The
Calling Search Space and Original Called Party that Cisco Unified TSP uses for this function follow:

 • Calling Search Space (CSS) — Uses CSS of the TransferringParty (the party that is transferring the
call).

 • Original Called Party — Set to the TransferringParty (the party that is transferring the call).

lineDevSpecific - BlindTransfer FAC CMC

This function blind transfers calls to a specified destination that requires a FAC, CMC, or both. The
Calling Search Space and Original Called Party that Cisco Unified TSP uses for this function follow:

 • Calling Search Space (CSS) — Uses CSS of the TransferringParty (the party that is transferring the
call).

 • Original Called Party — Set to the TransferringParty (the party that is transferring the call).

Direct Transfer
In Cisco Unified Communications Manager, the “Direct Transfer” softkey lets users transfer the other
end of one established call to the other end of another established call, while dropping the feature
initiator from those two calls. Here, an established call refers to a call that is either in the on hold state
or in the connected state. The “Direct Transfer” feature does not initiate a consultation call and does not
put the active call on hold.

A TAPI application can invoke the “Direct Transfer” feature by using the TAPI lineCompleteTransfer()
function on two calls that are already in the established state. This also means that the two calls do not
have to be set up initially by using the lineSetupTransfer() function.

Join
In Cisco Unified Communications Manager, the “Join” softkey joins all the parties of established calls
(at least two) into one conference call. The “Join” feature does not initiate a consultation call and does
not put the active call on hold. It also can include more than two calls, which results in a call with more
than three parties.

Cisco Unified TSP exposes the “Join” feature as a new device-specific function that is known as
lineDevSpecific() – Join. Applications can apply this function to two or more calls that are already in
the established state. This also means that the two calls do not need to be set up initially by using the
lineSetupConference() or linePrepareAddToConference() functions.
3-27
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 3 Features Supported by TSP
Cisco Unified TSP also supports the lineCompleteTransfer() function with
dwTransferMode=Conference. This function allows a TAPI application to join all the parties of two, and
only two, established calls into one conference call.

Cisco Unified TSP also supports the lineAddToConference() function to join a call to an existing
conference call that is in the ONHOLD state.

A feature interaction issue involves Join, Shared Lines, and the Maximum Number of Calls. The issue
occurs when you have two shared lines and the maximum number of calls on one line is less than the
maximum number of calls on the other line.

For example, in a scenario where one shared line, A, has a maximum number of calls set to 5 and another
shared line, A’, has a maximum number of calls set to 2, the scenario involves the following steps:

A calls B. B answers. A puts the call on hold.

C calls A. A answers. C puts the call on hold.

At this point, line A has two calls in the ONHOLD state, and line A’ has two calls in the
CONNECTED_INACTIVE state.

D calls A. A answers.

At this point, the system presents the call to A, but not to A’. This happens because the maximum calls
for A’ specifies 2.

A performs a Join operation either through the phone or by using the lineDevSpecific – Join API to join
all the parties in the conference. It uses the call between A and D as the primary call of the Join operation.

Because the call between A and D was used as the primary call of the Join, the system does not present
the ensuing conference call to A’. Both calls on A’ will go to the IDLE state. As the end result, A’ will
not see the conference call that exists on A.

Set the Original Called Party upon Redirect
Two extensions enable setting the original called party upon redirect as follows:

 • CCiscoLineDevSpecificRedirectResetOrigCalled

 • CCiscoLineDevSpecificRedirectSetOrigCalled

See lineDevSpecific, page 5-10 for more information.

Cisco Unified TSP Auto Update
Cisco Unified TSP supports auto update functionality, so the latest plug-in can be downloaded and
installed on a client machine. Be aware that the new plug-in will be QBE compatible with the connected
CTIManager. When the Cisco Unified Communications Manager is upgraded to a newer version, and
Cisco Unified TSP auto update functionality is enabled, the user will receive the latest compatible Cisco
Unified TSP, which will work with the upgraded Cisco Unified Communications Manager. This ensures
that the applications work as expected with the new release (provided the new Unified CM interface is
backward compatible with the TAPI interface). The locally installed Cisco Unified TSP on the client
machine allows applications to set the auto update options as part of the Cisco Unified TSP
configuration. The user can opt for updating Cisco Unified TSP in the following different ways:

 • Update Cisco Unified TSP whenever a different version (higher version than the existing version) is
available on the Cisco Unified Communications Manager server.
3-28
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 3 Features Supported by TSP
 • Update Cisco Unified TSP whenever a QBE protocol version mismatch exists between the existing
Cisco Unified TSP and the Cisco Unified Communications Manager version.

 • Do not update Cisco Unified TSP by using Auto Update functionality.

Multiple Calls per Line Appearance
The following topics describe the conditions of Line Appearance.

Maximum Number of Calls

The maximum number of calls per Line Appearance remains database configurable, which means that
the Cisco TSP supports more than two calls per line on Multiple Call Display (MCD) devices. An MCD
device comprises a device that can display more than two call instances per DN at any given time. For
non-MCD devices, the Cisco TSP supports a maximum of two calls per line. The absolute maximum
number of calls per line appearance equals 200.

Busy Trigger

In Cisco Unified CM, a setting, busy trigger, indicates the limit on the number of calls per line
appearance before the Cisco Unified CM will reject an incoming call. Be aware that the busy trigger
setting is database configurable, per line appearance, per cluster. The busy trigger setting replaces the
old call waiting flag per DN. You cannot modify the busy trigger setting using the CiscoTSP.

Call Forward No Answer Timer

Be aware that the Call Forward No Answer timer is database configurable, per DN, per cluster. You
cannot configure this timer using the CiscoTSP.

Shared Line Appearance
Cisco Unified TSP supports opening two different lines that each share the same DN. Each of these lines
represents a Shared Line Appearance.

The Cisco Unified Communications Manager allows multiple active calls to exist concurrently on each
of the different devices that share the same line appearance. The system still limits each device to, at
most, one active call and multiple hold or incoming calls at any given time. Applications that use the
Cisco Unified TSP to monitor and control shared line appearances can support this functionality.

If a call is active on a line that is a shared line appearance with another line, the call appears on the other
line with the dwCallState=CONNECTED and the dwCallStateMode=INACTIVE. Even though the call
party information may not display on the actual IP phone for the call at the other line, Cisco Unified TSP
still reports the call party information on the call at the other line. This gives the application the ability
to decide whether to block this information. Also, the system does not allow call control functions on a
call that is in the CONNECTED INACTIVE call state.

Cisco Unified TSP does not support shared lines on CTI Route Point devices.
3-29
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 3 Features Supported by TSP
In the scenario where a line is calling a DN that contains multiple shared lines, the dwCalledIDName in
the LINECALLINFO structure for the line with the outbound call may be empty or set randomly to the
name of one of the shared DNs. The reason for this should be obvious as Cisco Unified TSP and the
Cisco Unified Communications Manager cannot resolve which of the shared DN’s you are calling until
the call is answered.

Select Calls
The “Select” softkey on IP phones lets a user select call instances to perform feature activation, such as
transfer or conference, on those calls. The action of selecting a call on a line locks that call, so it cannot
be selected by any of the shared line appearances. Pressing the “Select” key on a selected call will
deselect the call.

Cisco Unified TSP does not support the “Select” function to select calls because all transfer and
conference functions contain parameters that indicate on which calls the operation should be invoked.

Cisco Unified TSP supports the events that a user who selects a call on an application-monitored line
causes. When a call on a line is selected, all other lines that share the same line appearance will see the
call state change to dwCallState=CONNECTED and dwCallStateMode=INACTIVE.

Forced Authorization Code and Client Matter Code
Cisco Unified TSP supports and interacts with two Cisco Unified Communications Manager features:
Forced Authorization Code (FAC) and Client Matter Code (CMC). The FAC feature lets the System
Administrator require users to enter an authorization code to reach certain dialed numbers. The CMC
feature lets the System Administrator require users to enter a client matter code to reach certain dialed
numbers.

The system alerts a user of a phone that a FAC or CMC must be entered by sending a “ZipZip” tone to
the phone that the phone in turn plays to the user. Cisco Unified TSP will send a new
LINE_DEVSPECIFIC event to the application whenever the application should play a “ZipZip” tone.
Applications can use this event to indicate when a FAC or CMC is required. For an application to start
receiving the new LINE_DEVSPECIFIC event, it must perform the following steps:

1. lineOpen with dwExtVersion set to 0x00050000 or higher

2. lineDevSpecific – Set Status Messages to turn on the Call Tone Changed device specific events

The application can enter the FAC or CMC code with the lineDial() API. Applications can enter the code
in its entirety or one digit at a time. An application may also enter the FAC and CMC code in the same
string as long as they are separated by a “#” character and also ended with a “#” character. The optional
“#” character at the end only serves to indicate dialing is complete.

If an application does a lineRedirect() or a lineBlindTransfer() to a destination that requires a FAC or
CMC, Cisco Unified TSP returns an error. The error that Cisco Unified TSP returns indicates whether a
FAC, a CMC, or both are required. Cisco Unified TSP supports two new lineDevSpecific() functions,
one for Redirect and one for BlindTransfer, that allows an application to enter a FAC or CMC, or both,
when a call gets redirected or blind transferred.
3-30
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 3 Features Supported by TSP
CTI Port Third-Party Monitoring Port
Opening a CTI port device in first-party mode means that either the application is terminating the media
itself at the CTI port or that the application is using the Cisco Wave Drivers to terminate the media at
the CTI port. This also comprises registering the CTI port device.

Opening a CTI port in third-party mode means that the application is interested in just opening the CTI
port device, but it does not want to handle the media termination at the CTI port device. An example of
this would be a case where an application would want to open a CTI port in third-party mode because it
is interested in monitoring a CTI port device that has already been opened/registered by another
application in first party mode. Opening a CTI Port in third-party mode does not prohibit the application
from performing call control operations on the line or on the calls of that line.

Cisco Unified TSP allows TAPI applications to open a CTI port device in third-party mode via the
lineDevSpecific API, if the application has negotiated at least extension version 6.0(1) and set the high
order bit, so the extension version is set to at least 0x80050000.

The TAPI architecture lets two different TAPI applications that are running on the same PC use the same
Cisco Unified TSP. In this situation, if both applications want to open the CTI port, problems could
occur. Therefore, the first application to open the CTI port will control the mode in which the second
application is allowed to open the CTI port. In other words, all applications that are running on the same
PC, using the same Cisco Unified TSP, must open CTI ports in the same mode. If a second application
tries to open the CTI port in a different mode, the lineDevSpecific() request fails.

Translation Pattern

Warning TSP does not support the translation pattern because it may cause a dangling call in a conference
scenario. The application needs to clear the call to remove this dangling call or simply close and
reopen the line.

Forwarding
Cisco Unified TSP now provides added support for the lineForward() request to set and clear ForwardAll
information on a line. This will allow TAPI applications to set the Call Forward All setting for a
particular line device. Activating this feature will allow users to set the call forwarding Unconditionally
to a forward destination.

Cisco Unified TSP sends LINE_ADDRESSSTATE messages when lineForward() requests successfully
complete. These events also get sent when call forward indications are obtained from the CTI, indicating
that a change in forward status has been received from a third party, such as Cisco Unified
Communications Manager Administration or another application setting call forward all.

Extension Mobility
Extension Mobility, a Cisco Unified Communications Manager feature, allows a user to log in and log
out of a phone. Cisco Extension Mobility loads a user Device Profile (including line, speed dial numbers,
and so on) onto the phone when the user logs in.

Cisco Unified TSP recognizes a user who is logged into a device as the Cisco Unified TSP User.
3-31
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 3 Features Supported by TSP
Using Cisco Unified Communications Manager Administration, you can associate a list of controlled
devices with a user.

When the Cisco Unified TSP user logs into the device, the system places the lines that are listed in the
user Cisco Extension Mobility profile on the phone device and removes lines that were previously on the
phone. If the device is not in the controlled device list for the Cisco Unified TSP User, the application
receives a PHONE_CREATE or LINE_CREATE message. If the device is in the controlled list, the
application receives a LINE_CREATE message for the added line and a LINE_REMOVE message for
the removed line.

When the user logs out, the original lines get restored. For a non-controlled device, the application
perceives a PHONE_REMOVE or LINE_REMOVE message. For a controlled device, it perceives a
LINE_CREATE message for an added line and a LINE_REMOVE message for a removed line.

Directory Change Notification
The Cisco Unified TSP sends notification events when a device has been added to or removed from the
user-controlled device list in the directory. Cisco Unified TSP sends events when the user is deleted from
Cisco Unified Communications Manager Administration.

Cisco Unified TSP sends a LINE_CREATE or PHONE_CREATE message when a device is added to a
users control list.

It sends a LINE_REMOVE or PHONE_REMOVE message when a device is removed from the user
controlled list or the device is removed from database.

When the system administrator deletes the current user, Cisco Unified TSP generates a LINE_CLOSE
and PHONE_CLOSE message for each open line and open phone. After it does this, it sends a
LINE_REMOVE and PHONE_REMOVE message for all lines and phones.

Note Cisco Unified TSP generates PHONE_REMOVE / PHONE_CREATE messages only if the application
called the phoneInitialize function earlier.

The system generates a change notification if the device is added to or removed from the user by using
Cisco Unified Communications Manager Administration or the Bulk Administration Tool (BAT).

If you program against the LDAP directory, change notification does not generate.

Privacy Release
The Cisco Unified Communications Manager Privacy Release feature allows the user to dynamically
alter the privacy setting. The privacy setting affects all existing and future calls on the device.

Cisco Unified TSP does not support the Privacy Release feature.

Barge and cBarge
Cisco Unified Communications Manager supports the Barge and cBarge features. The Barge feature uses
the built-in conference bridge. The cBarge feature uses the shared conference resource.

Cisco Unified TSP supports the events that are caused by the invocation of the Barge and cBarge
features. It does not support invoking either Barge or cBarge through an API of Cisco Unified TSP.
3-32
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 3 Features Supported by TSP
XSI Object Pass Through
XSI-enabled IP phones allow applications to directly communicate with the phone and access XSI
features, such as manipulate display, get user input, play tone, and so on. To allow TAPI applications
access to the XSI capabilities without having to set up and maintain an independent connection directly
to the phone, TAPI provides the ability to send the device data through the CTI interface. The system
exposes this feature as a Cisco Unified TSP device-specific extension.

The system only supports the PhoneDevSpecificDataPassthrough request for IP phone devices.

Silent Install Support
The Cisco TSP installer supports silent install, silent upgrade, and silent reinstall from the command
prompt. Users do not see any dialog boxes during the silent installation.
3-33
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 3 Features Supported by TSP
3-34
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

TAPI Developer Guide for Cisc
OL-18532-01
C H A P T E R 4

Cisco Unified TAPI Installation

This chapter describes how to install and configure the Cisco Unified Telephony Application
Programming Interface (TAPI) client software for Cisco Unified Communications Manager. It contains
the following sections:

 • Installing the Cisco Unified TSP

 • Silent Installation

 • Activating the Cisco Unified TSP

 • Configuring the Cisco Unified TSP

 • Cisco Unified TSP Configuration Settings

 • Installing the Wave Driver

 • Saving Wave Driver Information

 • Verifying the Wave Driver Exists

 • Verifying the Cisco Unified TSP Installation

 • Setting Up Client-Server Configuration

 • Uninstalling the Wave Driver

 • Removing the Cisco Unified TSP

 • Managing the Cisco Unified TSP

Note The upgraded TAPI client software does not work with previous releases of Cisco Unified
Communications Manager.

Installing the Cisco Unified TSP
Install the Cisco Unified TSP software either directly from the Cisco Unified Communications Manager
CD-ROM or from Cisco Unified Communications Manager Administration. For information on
installing plug-ins from the Cisco Unified Communications Manager, see the Cisco Unified
Communications Manager Administration Guide. The installation wizard varies depending on whether
you have a previous version of Cisco Unified TSP installed.

Note If you are installing multiple TSPs, multiple copies of CiscoTSPXXX.tsp and CiscoTUISPXXX.dll files
will exist in the same Windows system directory.
4-1
o Unified Communications Manager Release 7.1(2)

Chapter 4 Cisco Unified TAPI Installation
Silent Installation
To install the Cisco Unified TSP from the Cisco Unified Communications Manager Administration
CD-ROM, perform the following steps:

Procedure

Step 1 Insert the Cisco Unified Communications Manager CD-ROM.

Step 2 Double-click My Computer.

Step 3 Double-click the CD-ROM drive.

Step 4 Double-click the Installs folder.

Step 5 Double-click Cisco TSP.exe.

Step 6 Follow the online instructions.

Next Step

Install the Cisco Wave Driver if you plan to use first-party call control. Perform this step even if you are
performing your own media termination. For more information, see the “Installing the Wave Driver”
section.

Silent Installation
You can silently install, upgrade, or reinstall Cisco TSP. Use the following commands on the Windows
command line:

Installation
CiscoTSP.exe /s /v”/qn”

Upgrade
CiscoTSP.exe /s /v”/qn”

Reinstallation
CiscoTSP.exe /s /v”/qn REINSTALL=\”ALL\” REBOOT=\”ReallySuppress\””

Activating the Cisco Unified TSP
You can install up to 10 TSPs on a computer. Use the following procedure to activate each of these TSPs.
When you install a Cisco Unified TSP, you add it to the set of active TAPI service providers. The TSP
displays as CiscoTSPXXX, where X ranges between 001 and 010. If a TSP has been removed or if some
problem has occurred, you can manually add it to this set.

To manually add the Cisco Unified TSP to the list of telephony drivers, perform the following steps.

Procedure for Windows 2000 and Windows XP

Step 1 Open the Control Panel.

Step 2 Double-click Phone and Modem Options.
4-2
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 4 Cisco Unified TAPI Installation
Configuring the Cisco Unified TSP
Step 3 On the Phone and Modem Options dialog box, click the Advanced tab.

Note If the Cisco Unified TSP is either not there or you removed it previously and want to add it now,
you can do so from this window.

Step 4 Click Add.

Step 5 On the Add Provider dialog box, choose the appropriate TSP. Labels identify the TSPs in the Telephony
providers window as CiscoTSPXXX, where XXX ranges between 001 and 010.

Step 6 Click Add.

The TSP that you chose displays in the provider list in the Phone and Modem Options window.

Step 7 Configure the Cisco Unified TSP as described in “Configuring the Cisco Unified TSP” or click Close to
complete the setup.

Procedure for Windows NT, Windows 98, and Windows 95

Step 1 Open the Control Panel.

Step 2 Double-click Telephony.

Step 3 Click the Telephony Drivers tab.

Note If the Cisco Unified TSP is either not there or you removed it previously and want to add it now,
you can do so from this window.

Step 4 Click Add.

Step 5 On the Add Provider dialog box, choose the appropriate TSP. Labels identify the TSPs in the Telephony
providers window as CiscoTSPXXX, where XXX ranges between 001 and 010.

Step 6 Click Add.

The Provider list in the Telephony Drivers window now includes the CiscoTSPXXX range 001 - 010.

Step 7 Configure Cisco Unified TSP as described in “Configuring the Cisco Unified TSP” or click Close to
complete the setup.

Configuring the Cisco Unified TSP
You configure the Cisco Unified TSP by setting parameters in the Cisco IP-PBX Service Provider
configuration window. Perform the following steps to configure Cisco Unified TSP.

Procedure for Windows 2000 and Windows XP

Step 1 Open the Control Panel.

Step 2 Double-click Phone and Modem Options.

Step 3 Choose the Cisco Unified TSP that you want to configure.
4-3
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 4 Cisco Unified TAPI Installation
Cisco Unified TSP Configuration Settings
Step 4 Click Configure.

The system displays the Cisco IP PBX Service Provider dialog box.

Step 5 Enter the appropriate settings as described in the “Cisco Unified TSP Configuration Settings” section.

Step 6 To save changes, click OK.

Note After the TSP is configured, you must restart the telephony service before an application can run
and connect with its devices.

Procedure for Windows NT, Windows 98, and Windows 95

Step 1 Open the Control Panel.

Step 2 Double-click Telephony.

Step 3 Choose the Cisco Unified TSP that you want to configure.

Step 4 Click Configure.

The system displays the Cisco IP PBX Service Provider dialog box.

Step 5 Enter the appropriate settings as described in the “Cisco Unified TSP Configuration Settings” section.

Step 6 Click OK to save changes.

Note After configuring the TSP, you must restart the telephony service before an application can run
and connect with its devices.

Cisco Unified TSP Configuration Settings
The following sections describe the tabs in the Cisco-IP PBX Service Provider dialog box:

 • General

 • User

 • CTI Manager

 • Wave

 • Trace

 • Advanced

 • Language
4-4
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 4 Cisco Unified TAPI Installation
Cisco Unified TSP Configuration Settings
General
The General Tab displays TSP and TSPUI version information, as illustrated in Figure 4-1.

Figure 4-1 Cisco IP PBX Service Provider General Tab

Table 4-1 contains a list of the General tab fields that must be set and their descriptions.

User
The User tab allows you to configure security information, as illustrated in Figure 4-2.

Table 4-1 Auto Update Information Fields

Field Description

Ask Before Update Enables the user to control the auto update process. This check box
is disabled by default.

Never AutoUpdate Figure 4-1 shows the default value. Choosing this radio button does
not perform an auto update even after an upgradeable plug-in
version is detected on the Cisco Unified Communications Manager.

Always AutoUpdate Choose this radio button to allow the Cisco TSP to auto update after
it detects an upgradeable plug-in version on the Cisco Unified
Communications Manager.

AutoUpdate on Incompatible
QBEProtocolVersion

Choose this radio button to allow the Cisco TSP to auto update only
when the local TSP version is incompatible with the Cisco Unified
Communications Manager, and upgrading the TSP to the plug-in
version represents the only choice to continue.
4-5
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 4 Cisco Unified TAPI Installation
Cisco Unified TSP Configuration Settings
Figure 4-2 Cisco IP PBX Service Provider User Tab

Table 4-2 contains a list of the fields for the User tab that must be set and their descriptions.

CTI Manager
The CTI Manager tab allows you to configure primary and secondary CTI Manager information, as
illustrated in Figure 4-3.

Table 4-2 User Tab Configuration Fields

Field Description

User Name Enter the user name of the user that you want to access devices. This
TSP can access devices and lines that are associated with this user.
Make sure that this user is also configured in the Cisco Unified
Communications Manager, so TSP can connect.

The TSP configuration registry keys store the user name and
password that you enter.

Note You can designate only one user name and password to be
active at any time for a TSP.

Password Enter the password that is associated with the user that you entered
in the User Name field. The computer encrypts the password and
stores it in the registry.

Verify Password Reenter the user password.
4-6
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 4 Cisco Unified TAPI Installation
Cisco Unified TSP Configuration Settings
Figure 4-3 Cisco-IP PBX Service Provider CTI Manager Tab

Table 4-3 contains a list of the CTI Manager tab fields that must be set and their descriptions.

Wave
The Wave tab allows you to configure settings for your wave devices, as illustrated in Figure 4-4.

Table 4-3 CTI Manager Configuration Fields

Field Description

Primary CTI Manager Location Use this field to specify the CTI Manager to which the TSP attempts
to connect first.

If the TSP is on the same computer as the primary CTI Manager,
choose the Local Host radio button.

If the primary CTI Manager is on a different computer, choose the
IP Address radio button and enter the IP address of primary CTI
Manager or choose the Host Name radio button and enter the host
name of primary CTI Manager.

Backup CTI Manager Location Use this field to specify the CTI Manager to which the TSP attempts
to connect if a connection to the primary CTI Manager fails.

If the TSP is on the same computer as the backup CTI Manager,
choose the Local Host radio button.

If the backup CTI Manager is on a different computer, choose the IP
Address radio button and enter the IP address of backup CTI
Manager or choose the Host Name radio button and enter the host
name of backup CTI Manager.
4-7
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 4 Cisco Unified TAPI Installation
Cisco Unified TSP Configuration Settings
Figure 4-4 Cisco IP PBX Service Provider Wave Tab
4-8
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 4 Cisco Unified TAPI Installation
Cisco Unified TSP Configuration Settings
Table 4-4 contains a list of the Wave tab fields that must be set and their descriptions.

Table 4-4 Wave Tab Configuration Fields

Field Description

Automated Voice Calls The number of Cisco wave devices that you are using determines the
possible number of automated voice lines. (The default value is 5.)
You can open as many CTI ports as the number of Cisco wave
devices that are configured. For example, if you enter “5,” you need
to create five CTI port devices in Cisco Unified Communications
Manager. If you change this number, you need to remove and then
reinstall any Cisco wave devices that you installed.

You can only configure a maximum of 255 wave devices for all
installed TSPs because Microsoft limits the number of wave devices
per wave driver to 255.

When you configure 256 or more wave devices (including Cisco or
other wave devices), Windows displays the following message
when you access the Sounds and Multimedia control panel: “An
Error occurred while Windows was working with the Control Panel
file C:\Winnt\System32\MMSYS.CPL.” TSP can still handle the
installed Cisco wave devices as long as you have not configured
more than 255 Cisco devices.

The current number of possible automated voice lines designates
the maximum number of lines that can be simultaneously opened by
using both LINEMEDIAMODE_AUTOMATEDVOICE and
LINEMEDIAMODE_INTERACTIVEVOICE.

If you are not developing a third-party call control application,
check the Enumerate only lines that support automated voice check
box, so the Cisco Unified TSP detects only lines that are associated
with a CTI port device.

Silence Detection If you use silence detection, this check box notifies the wave driver
of method to use to detect silence on lines that support automated
voice calls that are using the Cisco Wave Driver. If the check box is
checked (default), the wave driver searches for the absence of
audio-stream RTP packets. Because all devices on the network
suppress silence and stop sending packets, this method provides a
very efficient way for the wave driver to detect silence.

However, if some phones or gateways do not perform silence
suppression, the wave driver must analyze the content of the media
stream and, at some threshold, declare that silence is in effect. This
CPU-intensive method handles media streams from any type of
device.

If some phones or gateways on your network do not perform silence
suppression, you must specify the energy level at which the wave
driver declares that silence is in effect. This value of the 16-bit
linear energy level ranges from 0 to 32767, and the default value is
200. If all phones and gateways perform silence suppression, the
system ignores this value.
4-9
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 4 Cisco Unified TAPI Installation
Cisco Unified TSP Configuration Settings
Trace
The Trace tab allows you to configure various trace settings, as illustrated in Figure 4-5. Changes to trace
parameters take effect immediately, even if TSP is running.

Figure 4-5 Cisco IP PBX Service Provider Trace Tab

Table 4-5 contains a list of the Trace tab fields that must be set and their descriptions.

Table 4-5 Trace Tab Configuration Fields

Field Description

On This setting allows you to enable Global Cisco TSP trace.

Select the check box to enable Cisco TSP trace. When you enable
trace, you can modify other trace parameters in the dialog box. The
Cisco TSP trace depends on the values that you enter in these fields.

Clear the check box to disable Cisco TSP trace. When you disable
trace, you cannot choose any trace parameters in the dialog box, and
TSP ignores the values that are entered in these fields.

Max lines/file Use this field to specify the maximum number of lines that the trace
file can contain. The default value is 10,000. After the file contains
the maximum number of lines, trace opens the next file and writes
to that file.

No. of files Use this field to specify the maximum number of trace files. The
default value is 10. File numbering occurs in a rotating sequence
starting at 0. The counter restarts at 0 after it reaches the maximum
number of files minus one.
4-10
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 4 Cisco Unified TAPI Installation
Cisco Unified TSP Configuration Settings
Directory Use this field to specify the location in which trace files for all Cisco
Unified TSPs are stored. Make sure that the specified directory
exists.

The system creates a subdirectory for each Cisco Unified TSP. For
example, the CiscoTSP001Log directory stores Cisco Unified TSP
1 log files. The system creates trace files with filename
TSP001Debug000xxx.txt for each TSP in its respective
subdirectory.

TSP Trace This setting activates internal TSP tracing. When you activate TSP
tracing, Cisco Unified TSP logs internal debug information that you
can use for debugging purposes. You can choose one of the
following levels:

Error—Logs only TSP errors.

Detailed—Logs all TSP details (such as log function calls in the
order that they are called).

The system checks the TSP Trace check box and chooses the Error
radio button by default.

CTI Trace This setting traces messages that flow between Cisco Unified TSP
and CTI. Cisco Unified TSP communicates with the CTI Manager.
By default, the system leaves the check box unchecked.

TSPI Trace This setting traces all messages and function calls between TAPI
and Cisco Unified TSP. The system leaves this check box
unchecked by default.

If you check the check box, TSP traces all the function calls that
TAPI makes to Cisco Unified TSP with parameters and messages
(events) from Cisco Unified TSP to TAPI.

Table 4-5 Trace Tab Configuration Fields (continued)

Field Description
4-11
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 4 Cisco Unified TAPI Installation
Cisco Unified TSP Configuration Settings
Advanced
The Advanced tab allows you to configure timer settings, as illustrated in Figure 4-6.

Note These timer settings that are meant for advanced users only rarely change.

Figure 4-6 Cisco IP PBX Service Provider Advanced Tab

Table 4-6 contains a list of the Advanced tab fields that must be set and their descriptions.

Table 4-6 Advanced Configuration Fields

Field Description

Synchronous Message Timeout
(secs)

Use this field to designate the time that the TSP waits to receive a
response to a synchronous message. The value displays in seconds,
and the default value is 15. Range goes from 5 to 60 seconds.

Requested Heartbeat Interval
(secs)

Use this field to designate the interval at which the heartbeat
messages are sent from TSP to detect whether the CTI Manager
connection is still alive. TSP sends heartbeats when no traffic exists
between the TSP and CTI Manager for 30 seconds or more. The
default interval is 30 seconds. Range goes from 30 to 300 seconds.

Connect Retry Interval (secs) Use this field to designate the interval between reconnection
attempts after a CTI Manager connection failure. The default value
is 30 seconds. Range goes from 15 to 300 seconds.

Provider Open Completed
Timeout (secs)

Use this field to designate the time that Cisco Unified TSP waits for
a Provider Open Completed Event, which indicates the CTI
Manager is initialized and ready to serve TSP requests. Be aware
that CTI initialization time is directly proportional to the number of
devices that are configured in the system. The default value is 50
seconds. Range goes from 5 to 900 seconds.
4-12
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 4 Cisco Unified TAPI Installation
Installing the Wave Driver
Language
The Language tab allows you to choose one of the installed languages to view the configuration settings
in that language, as illustrated in Figure 4-7.

Figure 4-7 Cisco IP PBX Service Provider Language Tab

Choose a language and click Change Language to reload the tabs with the text in that language.

Installing the Wave Driver
You can use the Cisco Wave Driver with Windows 2000 and Windows NT only. Windows 98 and
Windows 95 do not support the Cisco Wave Driver.

You should install Cisco Wave Driver if you plan to use first-party call control. (Do this even if you are
performing your own media termination.)

Caution Because of a restriction in Windows NT, the software may overwrite or remove existing wave drivers
from the system when you install or remove the Cisco wave driver on a Windows NT system. The
procedures in this section for installing and uninstalling the Cisco wave driver on Windows NT include
instructions on how to prevent existing wave drivers from being overwritten or removed.

To install the Cisco Wave Driver, perform the following steps.

Procedure for Windows XP

Step 1 Open the Control Panel.

Step 2 Open Add/Remove Hardware.

Step 3 Click Next.

Step 4 Select Yes, I have already connected the hardware.
4-13
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 4 Cisco Unified TAPI Installation
Installing the Wave Driver
Step 5 Select Add a New Hardware Device.

Step 6 Click Next.

Step 7 Select Install the Hardware that I manually select from a list.

Step 8 Click Next.

Step 9 For the hardware type, choose Sound, video and game controller.

Step 10 Click Next.

Step 11 Click Have Disk.

Step 12 Click Browse and navigate to the Wave Drivers folder in the folder where the Cisco Unified TSP is
installed.

Step 13 Choose OEMSETUP.INF and click Open.

Step 14 In the Install From Disk window, click OK.

Step 15 In the Select a Device Driver window, select the Cisco Unified TAPI Wave Driver and click Next.

Step 16 In the Start Hardware Installation window, click Next.

Step 17 If Prompted for Digital signature Not Found, click Continue Anyway.

Step 18 The installation may issue the following prompt:

The file avaudio32.dll on Windows NT Setup Disk #1 is needed,
Type the path where the file is located and then click ok.

If so, navigate to the same location where you chose OEMSETUP.INF, select avaudio32.dll, and click
OK.

Step 19 Click Yes.

Step 20 Click Finish.

Step 21 To restart to restart the computer, click Yes.

Procedure for Windows 2000

Step 1 Open the Control Panel.

Step 2 Double-click Add/Remove Hardware.

Step 3 Click Next.

Step 4 Click Add/Troubleshoot a Device and click Next.

Step 5 Click Add a New Device and click Next.

Step 6 Click No, I want to select the hardware from a list.

Step 7 Choose Sound, video and game controllers and click Next.

Step 8 Click Have Disk.

Step 9 Click Browse and change to the Wave Drivers folder in the folder where the Cisco Unified TSP is
installed.

Step 10 Choose OEMSETUP.INF and click Open.

Step 11 In the Install From Disk window, click OK.

Step 12 The Cisco Unified TAPI Wave Driver displays. Click Next.
4-14
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 4 Cisco Unified TAPI Installation
Saving Wave Driver Information
Step 13 Click Next.

Step 14 The installation may issue the following prompt:

Digital Signature Not Found

Step 15 Click Yes.

Step 16 The installation may issue the following prompt:

The file avaudio32.dll on Windows NT Setup Disk #1 is needed,
Type the path where the file is located and then click ok.

If so, enter the same location as where you chose OEMSETUP.INF and click OK.

Step 17 Click Yes.

Step 18 Click Finish.

Step 19 To restart, click Yes.

Procedure for Windows NT

Step 1 Before you add the Cisco Wave Driver, you must save the wave driver information from the registry in
a separate file as described in the “Saving Wave Driver Information” section.

Step 2 Open the Control Panel.

Step 3 Double-click Multimedia.

Step 4 Click Next.

Step 5 Click Add.

Step 6 Click Unlisted or Updated Driver.

Step 7 Click OK.

Step 8 Click Browse and change to the Wave Drivers folder in the folder where the Cisco Unified TSP is
installed.

Step 9 Click OK. Follow the online instruction, but do not restart the system when prompted.

Step 10 Examine the contents of the registry to verify the new driver was installed and the old drivers still exist,
as described in the “Verifying the Wave Driver Exists” section.

Step 11 Restart the computer.

Saving Wave Driver Information
Use the following steps to save wave driver information from the registry in a separate file. You must
perform this procedure when installing or uninstalling the Cisco Wave Driver on a Windows NT
computer.

Procedure

Step 1 Click Start > Run.

Step 2 In the text box, enter regedit.
4-15
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 4 Cisco Unified TAPI Installation
Verifying the Wave Driver Exists
Step 3 Click OK.

Step 4 Choose the Drivers32 key that is located in the following path:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\ CurrentVersion

Step 5 Choose Registry > Export Registry File.

Step 6 Enter a filename and choose the location to save.

Step 7 Click Save.

The file receives a .reg extension.

Verifying the Wave Driver Exists
When you install or uninstall the Cisco Wave Driver, you must verify whether it exists on your system.
Use these steps to verify whether the wave driver exists.

Procedure

Step 1 Click Start > Run.

Step 2 In the text box, enter regedit.

Step 3 Click OK.

Step 4 Choose the Drivers32 key that is located in the following path:

HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\ CurrentVersion

Step 5 If you are installing the wave driver, make sure that the driver “avaudio32.dll” displays in the data
column. If you are uninstalling the wave driver, make sure that the driver “avaudio32.dll” does not
display in the data column. This designates the Cisco Wave Driver.

Step 6 Verify that the previously existing wave values appear in the data column for wave1, wave2, wave3, and
so on. You can compare this registry list to the contents of the .reg file that you saved in the “Saving
Wave Driver Information” procedure by opening the .reg file in a text editor and viewing it and the
registry window side by side.

Step 7 If necessary, add the appropriate waveX string values for any missing wave values that should be
installed on the system. For each missing wave value, choose Edit > New > String Value and enter a
value name. Then, choose Edit > Modify, enter the value data, and click OK.

Step 8 Close the registry by choosing Registry > Exit.

Verifying the Cisco Unified TSP Installation
You can use the Microsoft Windows Phone Dialer Application to verify that the Cisco Unified TSP is
operational. For Windows NT and Windows 2000, locate the dialer application in C:\Program
Files\Windows NT\dialer.exe

For Windows 95 and Windows 98, locate the dialer application in C:\Windows\dialer.exe
4-16
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 4 Cisco Unified TAPI Installation
Setting Up Client-Server Configuration
Procedure For Windows 2000 and Windows XP

Step 1 Open the Dialer application by locating it in Windows Explorer and double-clicking it.

Step 2 Choose Edit > Options.

Step 3 Choose Phone as the Preferred Line for Calling.

Step 4 In the Line Used For area, choose one Cisco Line in the Phone Calls drop-down menu.

Step 5 Click OK.

Step 6 Click Dial.

Step 7 Enter a number to dial, choose Phone Call in the Dial as box, and then click Place Call.

Procedure for Windows NT, Windows 98, and Windows 95

Step 1 Open the Dialer application by locating it in Windows Explorer and double-clicking it:

A dialog box displays that requests the line and address that you want to use. If no lines are listed in the
Line drop-down list box, a problem may exist between the Cisco Unified TSP and the Cisco Unified
Communications Manager.

Step 2 Choose a line from the Line drop-down menu. Make sure Address is set to Address 0.

Step 3 Click OK.

Step 4 Enter a number to dial.

If the call is successful, you have verified that the Cisco Unified TSP is operational on the machine
where the Cisco Unified TSP is installed.

If you encounter problems during this procedure, or if no lines appear in the line drop-down list on the
dialer application, check the following items:

 • Make sure that the Cisco Unified TSP is configured properly.

 • Test the network link between the Cisco Unified TSP and the Cisco Unified Communications
Manager by using the ping command to check connectivity.

 • Make sure that the Cisco Unified Communications Manager server is functioning.

Setting Up Client-Server Configuration
For information on setting up a client-server configuration (Remote TSP) in Windows 2000, refer to the
Microsoft Windows Help feature. For information on client-server configuration in Windows NT, refer
to Microsoft White Papers.
4-17
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 4 Cisco Unified TAPI Installation
Uninstalling the Wave Driver
Uninstalling the Wave Driver
To remove the Cisco Wave Driver, perform the following steps.

Procedure for Windows XP

Step 1 Open the Control Panel.

Step 2 Select Sound and Audio Devices.

Step 3 Click the Hardware tab.

Step 4 Select Cisco TAPI Wave Driver.

Step 5 Click Properties.

Step 6 Click the Driver tab.

Step 7 Click Uninstall and OK to remove.

Step 8 If the Cisco TAPI Wave Driver entry is still displayed, close and open the window again to verify that it
has been removed.

Step 9 Restart the computer.

Procedure for Windows 2000

Step 1 Open the Control Panel.

Step 2 Double-click Add/Remove Hardware.

Step 3 Click Next.

Step 4 Choose Uninstall/Unplug a device and click Next.

Step 5 Choose Uninstall a device and click Next.

Step 6 Choose Cisco TAPI Wave Driver and click Next.

Step 7 Choose Yes, I want to uninstall this device and click Next.

Step 8 Click Finish.

Step 9 Restart the computer.

Procedure for Windows NT

Step 1 Before you uninstall the Cisco Wave Driver, you must save the wave driver information from the registry
in a separate file. For information on how to save the wave drive information to a separate file, see the
“Saving Wave Driver Information” section.

Step 2 After the registry information is saved, open the Control Panel.

Step 3 Double-click Multimedia.

Step 4 Click the Devices tab.

Step 5 To view all the audio devices, click the ‘+’ symbol next to Audio Devices.

Step 6 Click Audio for Cisco Sound System.
4-18
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 4 Cisco Unified TAPI Installation
Removing the Cisco Unified TSP
Step 7 Click Remove.

Step 8 Click Finish. Do not restart the system.

Step 9 Verify that the Cisco Wave Driver was removed and the old drivers still exist. For information on how to
do this, see the “Verifying the Wave Driver Exists” section.

Note When you verify the removal of the driver, make sure that Cisco Wave Driver “avaudio32.dll”
does not appear in the data column.

Step 10 Restart the computer.

Removing the Cisco Unified TSP
This process removes the Cisco Unified TSP from the provider list but does not uninstall the TSP. To
make these changes, perform the following steps.

Procedure for Windows 2000

Step 1 Open the Control Panel.

Step 2 Double-click the Phone and Modem icon.

Step 3 Click the Advanced tab.

Step 4 Choose the Cisco Unified TSP that you want to remove.

Step 5 To delete the Cisco Unified TSP from the list, click Remove.

Procedure for Windows NT, Windows 98, and Windows 95

Step 1 Open the Control Panel.

Step 2 Double-click the Telephony icon.

Step 3 Click the Advanced tab.

Step 4 Choose the Cisco Unified TSP that you want to remove.

Step 5 To delete the Cisco Unified TSP from the list, click Remove.
4-19
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 4 Cisco Unified TAPI Installation
Managing the Cisco Unified TSP
Managing the Cisco Unified TSP
You can perform the following actions on all installed TSPs:

 • Reinstall the existing Cisco Unified TSP version.

 • Upgrade to the newer version of the Cisco Unified TSP.

 • Uninstall the Cisco Unified TSP.

You cannot change the number of installed Cisco Unified TSPs when you reinstall or upgrade the Cisco
Unified TSPs.

Related Topics

 • Reinstalling the Cisco Unified TSP

 • Upgrading the Cisco Unified TSP

 • Auto Update for Cisco Unified TSP Upgrades

 • Uninstalling the Cisco Unified TSP

Reinstalling the Cisco Unified TSP
Use the following procedure to reinstall the Cisco Unified TSP on all supported platforms.

Procedure

Step 1 Open the Control Panel and double-click Add/Remove Programs.

Step 2 Choose Cisco Unified TSP and click Add/Remove.

The Cisco Unified TSP maintenance install dialog box displays.

Step 3 Click Reinstall TSP 4.1(X.X) radio button and click Next.

Step 4 Follow the online instructions.

Note If TSP files are already locked, the installation program prompts you to restart the computer.

Upgrading the Cisco Unified TSP
Use the following procedure to upgrade the Cisco Unified TSP on all supported platforms.

Procedure

Step 1 Choose the type of installation for Cisco Unified Communications Manager TSP 4.1(X.X).

Step 2 Choose Upgrade from TSP X.X(X.X) option radio button and click Next.

Step 3 Follow the online instructions.

Note If TSP files are already locked, the installation program prompts you to restart the computer.
4-20
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 4 Cisco Unified TAPI Installation
Managing the Cisco Unified TSP
Step 4 The Cisco TSP maintenance install dialog box displays.

If CiscoTSP.exe contains different version of Cisco Unified TSP than you have installed, the installation
program displays one of the following prompts, depending upon the previous Cisco Unified TSP
version:

Choose the type of installation for TSP Version 4.1(X.X).

 • If the previous installed version is Cisco Unified TSP 3.1(X.X), the following prompt displays:

Upgrade from TSP 3.1(X.X)

 • If the previous installed version is Cisco Unified TSP 3.2(X.X), the following prompt displays:

Upgrade from TSP 3.2(X.X)

 • If the previous installed version is Cisco Unified TSP 3.3(X.X), the following prompt displays:

Upgrade from 3.3(X.X)

 • If the previous installed version is Cisco Unified TSP 4.1(X.X), the following prompt displays:

Upgrade from TSP 4.1(X.X)

Auto Update for Cisco Unified TSP Upgrades
Cisco TSP supports auto update functionality, so you can download the latest plug-in and install it on
the client machine. When the Cisco Unified Communications Manager is upgraded to a higher version,
and Cisco TSP auto update functionality is enabled, this means that the latest compatible Cisco TSP is
available, which is compatible with the upgraded Unified CM. This ensures that the applications work
as expected with the new release (provided the new call manager interface is backward compatible with
the TAPI interface). The Cisco TSP that is installed locally on the client server allows the application to
set the auto update options as part of the Cisco TSP configuration. You can opt for updating the Cisco
TSP in the following different ways.

 • Update Cisco TSP whenever a different (has to be higher version than existing one) version is
available on the Cisco Unified Communications Manager server.

 • Update Cisco TSP whenever a QBE protocol version mismatch occurs between the existing Cisco
TSP and the Cisco Unified Communications Manager version.

 • Do not update Cisco TSP by using the auto update functionality.

Auto Update Behavior

As part of initialization of Cisco TSP, when the application does lineInitializeEx, Cisco TSP queries the
current TSP plug-in version information that is available on Cisco Unified Communications Manager
server. After this information is available, Cisco TSP compares the installed Cisco TSP version with the
plug-in version. If user chose an option for Auto Update, Cisco TSP triggers the update process. As part
of Auto Update, Cisco TSP behaves in the following ways on different platforms.

Windows 95, Windows 98, Windows ME

Because Cisco TSP is in use and locked when the application does lineInitializeEx, the auto update
process requests that you close all the running applications to install the new TSP version on the client
setup. When all the running applications get closed, Cisco TSP auto update process can continue, and
4-21
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 4 Cisco Unified TAPI Installation
Managing the Cisco Unified TSP
you will be informed about the upgrade success. If the running applications do not get closed and the
installation continues, the new version of Cisco TSP will not get installed, and a corresponding error gets
reported to the applications.

Windows NT

After Cisco TSP detects that an upgradeable version is available on the Cisco Unified Communications
Manager server and Auto Update gets chosen, Cisco TSP reports 0 lines to the application and removes
the Cisco TSP provider from the provider list. It will then try to stop the telephony service to avoid any
locked files during Auto Update. If the telephony service can be stopped, Cisco TSP gets silently auto
updated, and the service gets restarted. Applications must be reinitialized to start using Cisco TSP. If the
telephony service could not be stopped, Cisco TSP installs the new version and displays a message to
restart the system. You must restart the system to use the new Cisco TSP.

Windows 2000 or XP

After Cisco TSP detects that an upgradeable version is available on the Cisco Unified Communications
Manager server and Auto Update option gets chosen, Cisco TSP reports 0 lines to the application and
removes the Cisco TSP provider from the provider list. If a new TSP version is detected during the
reconnect time, the running applications receive LINE_REMOVE on all the lines, which are already
initialized and are in OutOfService state. Cisco TSP silently upgrades to the new version that was
downloaded from the Cisco Unified Communications Manager and puts the Cisco TSP provider back on
the provider list. All the running applications receive LINE_CREATE messages.

WinXP supports multiple user logon sessions (fast user switching); however, the system supports Auto
Update only for the first logon user. If multiple active logon sessions exist, Cisco TSP only supports the
Auto Update functionality for the first logged-on user.

Note If a user has multiple Cisco TSPs installed on the client machine, the system enables only the first Cisco
TSP instance to set up the Auto Update configuration. All Cisco TSPs get upgraded to a common version
upon version mismatch. From “Control Panel/Phone & Modem Options/Advanced/CiscoTSP001,” the
General window displays the options for Auto Update.

Because it is a CTI service parameter, which can be configured, you can change the plug-in location to
a different machine than the Cisco Unified Communications Manager server. The default location is
“//<CMServer>//ccmpluginsserver”.

If Silent upgrade fails on any listed platforms for any reason (such as locked files that are encountered
during upgrade on Win95/98/ME), the old Cisco TSP provider(s) do not get put back on the provider list
to avoid any looping of the Auto Update process. Ensure that the update options get cleared and the
providers get added to provider list manually. Update the Cisco TSP manually or by fixing the
problem(s) that are encountered during Auto Update and reinitializing Cisco Unified TAPI to trigger the
Auto Update process.

Note TSPAutoinstall.exe, which has user interface windows, can proceed to display these windows only when
the telephony service enables the LocalSystem logon option with “Allow Service to interact with
Desktop.” If the logon option is not set as LocalSystem or logon option is LocalSystem but “Allow
Service to interact with Desktop” is disabled, Cisco TSP cannot launch the AutoInstall UI windows and
will not continue with AutoInstall.
4-22
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 4 Cisco Unified TAPI Installation
Managing the Cisco Unified TSP
Ensure that the following logon options are set for the telephony service.

Step 1 Logon as: LocalSystem.

Step 2 Enable the check box: “Allow Service to interact with Desktop.”

These telephony service settings, when changed, require manual restart of the service to take effect.

Step 3 If, after changing the settings to the preceding values, the service does not restart, Cisco TSP checks for
“Allow Service to interact with user” to be positive (as the configuration is updated for the service in the
database), but AutoInstall UI cannot display. Cisco TSP continues to put the entry for
TSPAutoInstall.exe under Registry key RUNONCE. This will help autoinstall to run when the machine
reboots the next time.

Uninstalling the Cisco Unified TSP
Use the following procedure to uninstall the Cisco Unified TSP on all supported platforms.

Procedure

Step 1 Open the Control Panel and double-click Add/Remove Programs.

Step 2 Choose Cisco Unified TSP and click Add/Remove.

The Cisco Unified TSP maintenance install dialog box displays.

Step 3 Choose Uninstall: Remove the installed TSP radio button and click Next.

Step 4 Follow the online instructions.

Note If TSP files are already locked, the installation program prompts you to restart the computer.
4-23
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 4 Cisco Unified TAPI Installation
Managing the Cisco Unified TSP
4-24
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

TAPI Developer Guide for Cisc
OL-18532-01
C H A P T E R 5

Basic TAPI Implementation

This chapter outlines the TAPI 2.1 functions, events, and messages that the Cisco Unified TAPI Service
Provider (TSP) supports. This chapter contains functions in the following sections:

 • Overview, page 5-1

 • TAPI Line Functions, page 5-1

 • TAPI Line Messages, page 5-56

 • TAPI Line Device Structures, page 5-72

 • TAPI Phone Functions, page 5-119

 • TAPI Phone Messages, page 5-136

 • TAPI Phone Structures, page 5-143

 • Wave Functions, page 5-150

Overview
TAPI comprises a set of classes that expose the functionality of the Cisco Unified Communications
Solutions. TAPI enables developers to create customized IP telephony applications for Cisco Unified
Communications Manager without specific knowledge of the communication protocols between the
Cisco Unified Communications Manager and the service provider. For example, a developer could create
a TAPI application that communicates with an external voice-messaging system.

TAPI Line Functions
The number of TAPI devices that are configured in the Cisco Unified Communications Manager
determines the number of available lines. To terminate an audio stream by using first-party control, you
must first install the Cisco wave device driver.

Table 5-1 TAPI Line Functions Supported

TAPI Line Functions Supported

lineAccept

lineAddProvider

lineAddToConference
5-1
o Unified Communications Manager Release 7.1(2)

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
lineAnswer

lineBlindTransfer

lineCallbackFunc

lineClose

lineCompleteTransfer

lineConfigProvider

lineDeallocateCall

lineDevSpecific

lineDevSpecificFeature

lineDial

lineDrop

lineForward

lineGenerateDigits

lineGenerateTone

lineGetAddressCaps

lineGetAddressID

lineGetAddressStatus

lineGetCallInfo

lineGetCallStatus

lineGetConfRelatedCalls

lineGetDevCaps

lineGetID

lineGetLineDevStatus

lineGetMessage

lineGetNewCalls

lineGetNumRings

lineGetProviderList

lineGetRequest

lineGetStatusMessages

lineGetTranslateCaps

lineHandoff

lineHold

lineInitialize

lineInitializeEx

lineMakeCall

lineMonitorDigits

Table 5-1 TAPI Line Functions Supported (continued)

TAPI Line Functions Supported
5-2
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
lineMonitorTones

lineNegotiateAPIVersion

lineNegotiateExtVersion

lineOpen

linePark

linePrepareAddToConference

lineRedirect

lineRegisterRequestRecipient

lineRemoveFromConference

lineSetAppPriority

lineSetCallPrivilege

lineSetNumRings

lineSetStatusMessages

lineSetTollList

lineSetupConference

lineSetupTransfer

lineShutdown

lineTranslateAddress

lineTranslateDialog

lineUnhold

lineUnpark

Table 5-1 TAPI Line Functions Supported (continued)

TAPI Line Functions Supported
5-3
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
lineAccept
The lineAccept function accepts the specified offered call.

Function Details

LONG lineAccept(
HCALL hCall,
LPCSTR lpsUserUserInfo,
DWORD dwSize

);

Parameters

hCall

A handle to the call to be accepted. The application must be an owner of the call. Call state of hCall
must be offering.

lpsUserUserInfo

A pointer to a string that contains user-user information to be sent to the remote party as part of the
call accept. Leave this pointer NULL if you do not want to send user-user information. User-user
information is sent only if supported by the underlying network. The protocol discriminator member
for the user-user information, if required, should appear as the first byte of the buffer that is pointed
to by lpsUserUserInfo and must be accounted for in dwSize.

Note The Cisco Unified TSP does not support user-user information.

dwSize

The size in bytes of the user-user information in lpsUserUserInfo. If lpsUserUserInfo is NULL, no
user-user information gets sent to the calling party, and dwSize is ignored.

lineAddProvider
The lineAddProvider function installs a new telephony service provider into the telephony system.

Function Details

LONG WINAPI lineAddProvider(
 LPCSTR lpszProviderFilename,
 HWND hwndOwner,
 LPDWORD lpdwPermanentProviderID
);

Parameters

lpszProviderFilename

A pointer to a null-terminated string that contains the path of the service provider to be added.

hwndOwner
5-4
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
A handle to a window in which dialog boxes that need to be displayed as part of the installation
process (for example, by the service provider's TSPI_providerInstall function) would be attached.
Can be NULL to indicate that any window created during the function should have no owner
window.

lpdwPermanentProviderID

A pointer to a DWORD-sized memory location into which TAPI writes the permanent provider
identifier of the newly installed service provider.

Return Values

Returns zero if request succeeds or a negative number if an error occurs. Possible return values are:

 • LINEERR_INIFILECORRUPT

 • LINEERR_NOMEM

 • LINEERR_INVALPARAM

 • LINEERR_NOMULTIPLEINSTANCE

 • LINEERR_INVALPOINTER

 • LINEERR_OPERATIONFAILED

lineAddToConference
This function takes the consult call that is specified by hConsultCall and adds it to the conference call
that is specified by hConfCall.

Function Details
LONG lineAddToConference(
 HCALL hConfCall,
 HCALL hConsultCall
);

Parameters

hConfCall

A pointer to the conference call handle. The state of the conference call must be
OnHoldPendingConference or OnHold.

hConsultCall

A pointer to the consult call that will be added to the conference call. The application must be the
owner of this call, and it cannot be a member of another conference call. The allowed states of the
consult call comprise connected, onHold, proceeding, or ringback

lineAnswer
The lineAnswer function answers the specified offering call.
5-5
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
Note CallProcessing requires previous calls on the device to be in connected call state before answering
further calls on the same device. If calls are answered without checking for the call state of previous calls
on the same device, then Cisco Unified TSP might return a successful answer response but the call will
not go to connected state and needs to be answered again.

Function Details

LONG lineAnswer(
 HCALL hCall,
 LPCSTR lpsUserUserInfo,
 DWORD dwSize
);

Parameters

hCall

A handle to the call to be answered. The application must be an owner of this call. The call state of
hCall must be offering or accepted.

lpsUserUserInfo

A pointer to a string that contains user-user information to be sent to the remote party at the time
the call is answered. You can leave this pointer NULL if no user-user information will be sent.

User-user information only gets sent if supported by the underlying network. The protocol
discriminator field for the user-user information, if required, should be the first byte of the buffer
that is pointed to by lpsUserUserInfo and must be accounted for in dwSize.

Note The Cisco Unified TSP does not support user-user information.

dwSize

The size in bytes of the user-user information in lpsUserUserInfo. If lpsUserUserInfo is NULL, no
user-user information gets sent to the calling party, and dwSize is ignored.

lineBlindTransfer
The lineBlindTransfer function performs a blind or single-step transfer of the specified call to the
specified destination address.

Note The lineBlindTransfer function that is implemented until Cisco Unified TSP 3.3 does not comply with
the TAPI specification. This function actually gets implemented as a consultation transfer and not a
single-step transfer. From Cisco Unified TSP 4.0, the lineBlindTransfer complies with the TAPI specs
wherein the transfer is a single-step transfer.
5-6
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
If the application tries to blind transfer a call to an address that requires a FAC, CMC, or both, then the
lineBlindTransfer function will return an error. If a FAC is required, the TSP will return the error
LINEERR_FACREQUIRED. If a CMC is required, the TSP will return the error
LINEERR_CMCREQUIRED. If both a FAC and a CMC are required, the TSP will return the error
LINEERR_FACANDCMCREQUIRED. An application that wants to blind transfer a call to an address
that requires a FAC, CMC, or both, should use the lineDevSpecific - BlindTransferFACCMC function.

Function Details

LONG lineBlindTransfer(
 HCALL hCall,
 LPCSTR lpszDestAddress,
 DWORD dwCountryCode
);

Parameters

hCall

A handle to the call to be transferred. The application must be an owner of this call. The call state
of hCall must be connected.

lpszDestAddress

A pointer to a NULL-terminated string that identifies the location to which the call is to be
transferred. The destination address uses the standard dial number format.

dwCountryCode

The country code of the destination. The implementation uses this parameter to select the call
progress protocols for the destination address. If a value of 0 is specified, the defined default
call-progress protocol is used.

lineCallbackFunc
The lineCallbackFunc function provides a placeholder for the application-supplied function name.

Function Details
VOID FAR PASCAL lineCallbackFunc(
 DWORD hDevice,
 DWORD dwMsg,
 DWORD dwCallbackInstance,
 DWORD dwParam1,
 DWORD dwParam2,
 DWORD dwParam3
);

Parameters

hDevice

A handle to either a line device or a call that is associated with the callback. The context that dwMsg
provides determines the nature of this handle (line handle or call handle). Applications must use the
DWORD type for this parameter because using the HANDLE type may generate an error.

dwMsg
5-7
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
A line or call device message.

dwCallbackInstance

Callback instance data that is passed back to the application in the callback. TAPI does not interpret
DWORD.

dwParam1

A parameter for the message.

dwParam2

A parameter for the message.

dwParam3

A parameter for the message.

Further Details

For information about parameter values that are passed to this function, see “TAPI Line Functions.”

lineClose
The lineClose function closes the specified open line device.

Function Details

LONG lineClose(
 HLINE hLine
);

Parameter

hLine

A handle to the open line device to be closed. After the line has been successfully closed, this handle
no longer remains valid.

lineCompleteTransfer
The lineCompleteTransfer function completes the transfer of the specified call to the party that is
connected in the consultation call.

Function Details

LONG lineCompleteTransfer(
 HCALL hCall,
 HCALL hConsultCall,
 LPHCALL lphConfCall,
 DWORD dwTransferMode
);
5-8
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
Parameters

hCall

A handle to the call to be transferred. The application must be an owner of this call. The call state
of hCall must be onHold, onHoldPendingTransfer.

hConsultCall

A handle to the call that represents a connection with the destination of the transfer. The application
must be comprise an owner of this call. The call state of hConsultCall must be connected, ringback,
busy, or proceeding.

lphConfCall

A pointer to a memory location where an hCall handle can be returned. If dwTransferMode is
LINETRANSFERMODE_CONFERENCE, the newly created conference call is returned in
lphConfCall and the application becomes the sole owner of the conference call. Otherwise, TAPI
ignores this parameter.

dwTransferMode

Specifies how the initiated transfer request is to be resolved. This parameter uses the following
LINETRANSFERMODE_ constant:

 – LINETRANSFERMODE_TRANSFER—Resolve the initiated transfer by transferring the
initial call to the consultation call.

 – LINETRANSFERMODE_CONFERENCE—The transfer gets resolved by establishing a
three-way conference among the application, the party connected to the initial call, and the party
connected to the consultation call. Selecting this option creates a conference call.

lineConfigProvider
The lineConfigProvider function causes a service provider to display its configuration dialog box. This
basically provides a straight pass-through to TSPI_providerConfig.

Function Details

LONG WINAPI lineConfigProvider(
 HWND hwndOwner,
 DWORD dwPermanentProviderID
);

Parameters

hwndOwner

A handle to a window to which the configuration dialog box (displayed by TSPI_providerConfig)
is attached. This parameter can equal NULL to indicate that any window that is created during the
function should have no owner window.

dwPermanentProviderID

The permanent provider identifier of the service provider to be configured.
5-9
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values
follow:

 • LINEERR_INIFILECORRUPT

 • LINEERR_NOMEM

 • LINEERR_INVALPARAM

 • LINEERR_OPERATIONFAILED

lineDeallocateCall
The lineDeallocateCall function deallocates the specified call handle.

Function Details

LONG lineDeallocateCall(
 HCALL hCall
);

Parameter

hCall

The call handle to be deallocated. An application with monitoring privileges for a call can always
deallocate its handle for that call. An application with owner privilege for a call can deallocate its
handle unless it is the sole owner of the call and the call is not in the idle state. The call handle is
invalid after it is deallocated.

lineDevSpecific
The lineDevSpecific function enables service providers to provide access to features that other TAPI
functions do not offer. The extensions are device-specific and the applications must be able to read the
extensions to take advantage of these extensions.

When used with the Cisco Unified TSP, lineDevSpecific can be used to:

 • Enable the message waiting lamp for a particular line.

 • Handle the audio stream (instead of using the provided Cisco wave driver).

 • Turn On or Off the reporting of media streaming messages for a particular line.

 • Register a CTI port or route point for dynamic media termination.

 • Set the IP address and the UDP port of a call at a CTI port or route point with dynamic media
termination.

 • Redirect a Call and Reset the OriginalCalledID of the call to the party that is the destination of the
redirect.

 • Redirect a call and set the OriginalCalledID of the call to any party.

 • Join two or more calls into one conference call.

 • Redirect a Call to a destination that requires a FAC, CMC, or both.
5-10
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
 • Blind Transfer a Call to a destination that requires a FAC, CMC, or both.

 • Open a CTI port in third party mode.

 • Set the SRTP algorithm IDs that a CTI port supports.

 • Acquire any CTI-controllable device in the Cisco Unified Communications Manager system, which
needs to be opened in super provider mode.

 • Deacquire any CTI-controllable device in the Cisco Unified Communications Manager system.

 • Trigger the actual line open from the TSP side. This is used for the delayed open mechanism.

 • Initiate TalkBack on the Intercom Whisper call of the Intercom line

 • Query SpeedDial and Label setting of a Intercom line.

 • Set SpeedDial and Label setting of a Intercom line.

 • Start monitoring a call

 • Start recording of a call

 • Stop recording of a call

 • Direct call with feature priority (see Do Not Disturb–Reject, page 3-9 for more information.

 • Transfer without media

 • Direct Transfer

 • Message Summary

Note In Cisco Unified TSP Releases 4.0 and later, the TSP no longer supports the ability to perform a
SwapHold/SetupTransfer on two calls on a line in the CONNECTED and the ONHOLD call states.
Therefore, these calls can be transferred by using lineCompleteTransfer. Cisco Unified TSP Releases 4.0
and later enable to transfer these calls using the lineCompleteTransfer function without having to
perform the SwapHold/SetupTransfer beforehand.

Function Details

LONG lineDevSpecific(
 HLINE hLine,
 DWORD dwAddressID,
 HCALL hCall,
 LPVOID lpParams,
 DWORD dwSize
);

Parameters

hLine

A handle to a line device. This parameter is required.

dwAddressID

An address identifier on the given line device.

hCall

A handle to a call. Although this parameter is optional, if it is specified, the call that it represents
must belong to the hLine line device. The call state of hCall is device specific.
5-11
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
lpParams

A pointer to a memory area that is used to hold a parameter block. The format of this parameter
block specifies device specific, and TAPI passes its contents to or from the service provider.

dwSize

The size in bytes of the parameter block area.

lineDevSpecificFeature
The lineDevSpecificFeature function enables service providers to provide access to features that other
TAPI functions do not offer. The extensions are device-specific and the applications must be able to read
the extensions to take advantage of these extensions. When used with the Cisco TSP,
lineDevSpecificFeature can be used to enable/disable Do-Not-Disturb feature on a device.

Function Details

LONG lineDevSpecificFeature(
HLINE hLine,
DWORD dwFeature,
LPVOID lpParams,
DWORD dwSize

);

Parameters

hLine

A handle to a line device. This parameter is required.

dwFeature

Feature to invoke on the line device. This parameter uses the PHONEBUTTONFUNCTION_ TAPI
constants. When used with the Cisco TSP, the only value that is considered valid is
PHONEBUTTONFUNCTION_DONOTDISTURB (0x0000001A).

lpParams

A pointer to a memory area used to hold a parameter block. The format of this parameter block is
device-specific and TAPI passes its contents to or from the service provider.

dwSize

The size in bytes of the parameter block area.

Return Values

Returns a positive request identifier if the function is completed asynchronously or a negative number if
an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY message is zero if the
function succeeds or it is a negative number if an error occurs.

Possible return values follow:

 • LINEERR_INVALFEATURE

 • LINEERR_OPERATIONUNAVAIL

 • LINEERR_INVALLINEHANDLE
5-12
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
 • LINEERR_OPERATIONFAILED

 • LINEERR_INVALPOINTER

 • LINEERR_RESOURCEUNAVAIL

 • LINEERR_NOMEM

 • LINEERR_UNINITIALIZED.

Error Codes

The following new error can be returned by Cisco TSP for Do-Not-Disturb feature:

LINERR_ALREADY_IN_REQUESTED_STATE 0xC0000009

lineDial
The lineDial function dials the specified number on the specified call.

The application can use this function to enter a FAC or CMC. The FAC or CMC can be entered one digit
at a time or multiple digits at a time. The application may also enter both the FAC and CMC if required
in one lineDial() request as long as the FAC and CMC are separated by a “#” character. If sending both
a FAC and CMC in one lineDial() request, Cisco recommends that you terminate the lpszDestAddress
with a “#” character to avoid waiting for the T.302 interdigit time-out.

You cannot use this function to enter a dial string along with a FAC and/or a CMC. You must enter the
FAC and/or CMC in a separate lineDial request.

Function Details

LONG lineDial(
 HCALL hCall,
 LPCSTR lpszDestAddress,
 DWORD dwCountryCode
);

Parameters

hCall

A handle to the call on which a number is to be dialed. Ensure the application is an owner of the
call. The call state of hCall can be any state except idle and disconnected.

lpszDestAddress

The destination to be dialed by using the standard dial number format.

dwCountryCode

The country code of the destination. The implementation uses this code to select the call progress
protocols for the destination address. If a value of 0 is specified, the default call progress protocol
is used.
5-13
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
lineDrop
The lineDrop function drops or disconnects the specified call. The application can specify user-user
information to be transmitted as part of the call disconnect.

Function Details

LONG lineDrop(
 HCALL hCall,
 LPCSTR lpsUserUserInfo,
 DWORD dwSize
);

Parameters

hCall

A handle to the call to be dropped. Ensure the application is an owner of the call. The call state of
hCall can be any state except an Idle state.

lpsUserUserInfo

A pointer to a string that contains user-user information to be sent to the remote party as part of the
call disconnect. You can leave this pointer NULL if no user-user information is to be sent. User-user
information is sent only if it is supported by the underlying network. The protocol discriminator
field for the user-user information, if required, should appear as the first byte of the buffer that is
pointed to by lpsUserUserInfo and must be accounted for in dwSize.

Note The Cisco Unified TSP does not support user-user information.

dwSize

The size in bytes of the user-user information in lpsUserUserInfo. If lpsUserUserInfo is NULL, no
user-user information gets sent to the calling party, and dwSize is ignored.

lineForward
The lineForward function forwards calls that are destined for the specified address on the specified line,
according to the specified forwarding instructions. When an originating address (dwAddressID) is
forwarded, the switch deflects the specified incoming calls for that address to the other number. This
function provides a combination of forward all feature. This API allows calls to be forwarded
unconditionally to a forwarded destination. This function can also cancel forwarding that is currently in
effect.

To indicate that the forward is set/reset, upon completion of lineForward, TAPI fires
LINEADDRESSSTATE events that indicate the change in the line forward status.

Change forward destination with a call to lineForward without canceling the current forwarding set on
that line.
5-14
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
Note lineForward implementation of Cisco Unified TSP allows user to set up only one type for forward as
dwForwardMode = UNCOND. The lpLineForwardList data structure accepts LINEFORWARD entry
with dwForwardMode = UNCOND.

Function Details

LONG lineForward(
 HLINE hLine,
 DWORD bAllAddresses,
 DWORD dwAddressID,
 LPLINEFORWARDLIST const lpForwardList,
 DWORD dwNumRingsNoAnswer,
 LPHCALL lphConsultCall,
 LPLINECALLPARAMS const lpCallParams
);

Parameters

hLine

A handle to the line device.

bAllAddresses

Specifies whether all originating addresses on the line or just the one that is specified gets
forwarded. If TRUE, all addresses on the line get forwarded, and dwAddressID is ignored; if
FALSE, only the address that is specified as dwAddressID gets forwarded.

dwAddressID

The address of the specified line whose incoming calls are to be forwarded. This parameter gets
ignored if bAllAddresses is TRUE.

Note If bAllAddresses is FALSE, dwAddressID must equal 0.

lpForwardList

A pointer to a variably sized data structure that describes the specific forwarding instructions of type
LINEFORWARDLIST.

Note To cancel the forwarding that currently is in effect, ensure lpForwardList Parameter is set to NULL.

dwNumRingsNoAnswer

The number of rings before a call is considered a no answer. If dwNumRingsNoAnswer is out of
range, the actual value gets set to the nearest value in the allowable range.

Note This parameter is not used because this version of Cisco Unified TSP does not support call forward no
answer.
5-15
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
lphConsultCall

A pointer to an HCALL location. In some telephony environments, this location is loaded with a
handle to a consultation call that is used to consult the party to which the call is being forwarded,
and the application becomes the initial sole owner of this call. This pointer must be valid even in
environments where call forwarding does not require a consultation call. This handle is set to NULL
if no consultation call is created.

Note This parameter is also ignored because a consult call is not created for setting up lineForward.

lpCallParams

A pointer to a structure of type LINECALLPARAMS. This pointer gets ignored unless lineForward
requires the establishment of a call to the forwarding destination (and lphConsultCall is returned; in
which case, lpCallParams is optional). If NULL, default call parameters get used. Otherwise, the
specified call parameters get used for establishing hConsultCall.

Note This parameter must be NULL for this version of Cisco Unified TSP because we do not create a consult
call.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values
follow:

 • LINEERR_INVALLINEHANDLE

 • LINEERR_NOMEM

 • LINEERR_INVALADDRESSID

 • LINEERR_OPERATIONUNAVAIL

 • LINEERR_INVALADDRESS

 • LINEERR_OPERATIONFAILED

 • LINEERR_INVALCOUNTRYCODE

 • LINEERR_RESOURCEUNAVAIL

 • LINEERR_INVALPOINTER

 • LINEERR_STRUCTURETOOSMALL

 • LINEERR_INVALPARAM

 • LINEERR_UNINITIALIZED

Note For lpForwardList[0].dwForwardMode other than UNCOND, lineForward returns
LINEERR_OPERATIONUNAVAIL. For lpForwardList.dwNumEntries more than 1, lineForward
returns LINEERR_INVALPARAM
5-16
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
lineGenerateDigits
The lineGenerateDigits function initiates the generation of the specified digits on the specified call as
out-of-band tones by using the specified signaling mode.

Note The Cisco Unified TSP supports neither invoking this function with a NULL value for lpszDigits to abort
a digit generation that is currently in progress nor invoking lineGenerateDigits while digit generation is
in progress. Cisco Unified IP Phones pass DTMF digits out of band. This means that the tone is not
injected into the audio stream (in-band) but is sent as a message in the control stream. The phone on the
far end then injects the tone into the audio stream to present it to the user. CTI port devices do not inject
DTMF tones. Also, be aware that some gateways will not inject DTMF tones into the audio stream on
the way out of the LAN.

Function Details

LONG lineGenerateDigits(
 HCALL hCall,
 DWORD dwDigitMode,
 LPCSTR lpszDigits,
 DWORD dwDuration
);

Parameters

hCall

A handle to the call. The application must be an owner of the call. Call state of hCall can be any state.

dwDigitMode

The format to be used for signaling these digits. The dwDigitMode can have only a single flag set.
This parameter uses the following LINEDIGITMODE_ constant:

 – LINEDIGITMODE_DTMF - Uses DTMF tones for digit signaling. Valid digits for DTMF
mode include ‘0’ - ‘9’, ‘*’, ‘#’.

lpszDigits

Valid characters for DTMF mode in the Cisco Unified TSP include ‘0’ through ‘9’, ‘*’, and ‘#’.

dwDuration

Duration in milliseconds during which the tone should be sustained.

Note Cisco Unified TSP does not support dwDuration.

lineGenerateTone
The lineGenerateTone function generates the specified tone over the specified call.

Note The Cisco Unified TSP supports neither invoking this function with a 0 value for dwToneMode to abort
a tone generation that is currently in progress nor invoking lineGenerateTone while tone generation is in
progress. Cisco Unified IP Phones pass tones out of band. This means that the tone is not injected into
5-17
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
the audio stream (in-band) but is sent as a message in the control stream. The phone on the far end then
injects the tone into the audio stream to present it to the user. Also, be aware that some gateways will
not inject tones into the audio stream on the way out of the LAN.

Function Details
LONG lineGenerateTone(
 HCALL hCall,
 DWORD dwToneMode,
 DWORD dwDuration,
 DWORD dwNumTones,
 LPLINEGENERATETONE const lpTones
);

Parameters

hCall

A handle to the call on which a tone is to be generated. The application must be an owner of the call.
The call state of hCall can be any state.

dwToneMode

Defines the tone to be generated. Tones can be either standard or custom tones. A custom tone
comprises a set of arbitrary frequencies. A small number of standard tones are predefined. The
duration of the tone gets specified with dwDuration for both standard and custom tones. The
dwToneMode parameter can have only one bit set. If no bits are set (the value 0 is passed), tone
generation gets canceled.

This parameter uses the following LINETONEMODE_ constant:

 – LINETONEMODE_BEEP - The tone is a beep, as used to announce the beginning of a
recording. The service provider defines the exact beep tone.

dwDuration

Duration in milliseconds during which the tone should be sustained.

Note Cisco Unified TSP does not support dwDuration.

dwNumTones

The number of entries in the lpTones array. This parameter is ignored if dwToneMode ≠ CUSTOM.

lpTones

A pointer to a LINEGENERATETONE array that specifies the components of the tone. This
parameter gets ignored for non-custom tones. If lpTones is a multifrequency tone, the various tones
play simultaneously.

lineGetAddressCaps
The lineGetAddressCaps function queries the specified address on the specified line device to determine
its telephony capabilities.
5-18
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
Function Details

LONG lineGetAddressCaps(
 HLINEAPP hLineApp,
 DWORD dwDeviceID,
 DWORD dwAddressID,
 DWORD dwAPIVersion,
 DWORD dwExtVersion,
 LPLINEADDRESSCAPS lpAddressCaps
);

Parameters

hLineApp

The handle by which the application is registered with TAPI.

dwDeviceID

The line device that contains the address to be queried. Only one address gets supported per line, so
dwAddressID must be zero.

dwAddressID

The address on the given line device whose capabilities are to be queried.

dwAPIVersion

The version number, obtained by lineNegotiateAPIVersion, of the API that is to be used. The
high-order word contains the major version number; the low-order word contains the minor version
number.

dwExtVersion

The version number of the extensions to be used. This number can be left zero if no device-specific
extensions are to be used. Otherwise, the high-order word contains the major version number and
the low-order word contains the minor version number.

lpAddressCaps

A pointer to a variably sized structure of type LINEADDRESSCAPS. Upon successful completion
of the request, this structure gets filled with address capabilities information. Prior to calling
lineGetAddressCaps, the application should set the dwTotalSize member of this structure to indicate
the amount of memory that is available to TAPI for returning information.

lineGetAddressID
The lineGetAddressID function returns the address identifier that is associated with an address in a
different format on the specified line.

Function Details

LONG lineGetAddressID(
 HLINE hLine,
 LPDWORD lpdwAddressID,
 DWORD dwAddressMode,
 LPCSTR lpsAddress,
 DWORD dwSize
);
5-19
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
Parameters

hLine

A handle to the open line device.

lpdwAddressID

A pointer to a DWORD-sized memory location that returns the address identifier.

dwAddressMode

The address mode of the address that is contained in lpsAddress. The dwAddressMode parameter
can have only a single flag set. This parameter uses the following LINEADDRESSMODE_
constant:

 – LINEADDRESSMODE_DIALABLEADDR - The address is specified by its dialable address.
The lpsAddress parameter represents the dialable address or canonical address format.

lpsAddress

A pointer to a data structure that holds the address that is assigned to the specified line device.
dwAddressMode determines the format of the address. Because the only valid value equals
LINEADDRESSMODE_DIALABLEADDR, lpsAddress uses the common dialable number format
and is NULL-terminated.

dwSize

The size of the address that is contained in lpsAddress.

lineGetAddressStatus
The lineGetAddressStatus function allows an application to query the specified address for its current
status.

Function Details

LONG lineGetAddressStatus(
 HLINE hLine,
 DWORD dwAddressID,
 LPLINEADDRESSSTATUS lpAddressStatus
);

Parameters

hLine

A handle to the open line device.

dwAddressID

An address on the given open line device. This parameter specifies the address to be queried.

lpAddressStatus

A pointer to a variably sized data structure of type LINEADDRESSSTATUS. Prior to calling
lineGetAddressStatus, the application should set the dwTotalSize member of this structure to
indicate the amount of memory that is available to TAPI for returning information.
5-20
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
lineGetCallInfo
The lineGetCallInfo function enables an application to obtain fixed information about the specified call.

Function Details

LONG lineGetCallInfo(
 HCALL hCall,
 LPLINECALLINFO lpCallInfo
);

Parameters

hCall

A handle to the call to be queried. The call state of hCall can be any state.

lpCallInfo

A pointer to a variably sized data structure of type LINECALLINFO. Upon successful completion
of the request, call-related information fills this structure. Prior to calling lineGetCallInfo, the
application should set the dwTotalSize member of this structure to indicate the amount of memory
that is available to TAPI for returning information.

lineGetCallStatus
The lineGetCallStatus function returns the current status of the specified call.

Function Details
LONG lineGetCallStatus(
 HCALL hCall,
 LPLINECALLSTATUS lpCallStatus
);

Parameters

hCall

A handle to the call to be queried. The call state of hCall can be any state.

lpCallStatus

A pointer to a variably sized data structure of type LINECALLSTATUS. Upon successful
completion of the request, call status information fills this structure. Prior to calling
lineGetCallStatus, the application should set the dwTotalSize member of this structure to indicate
the amount of memory available to TAPI for returning information.
5-21
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
lineGetConfRelatedCalls
The lineGetConfRelatedCalls function returns a list of call handles that are part of the same conference
call as the specified call. The specified call represents either a conference call or a participant call in a
conference call. New handles get generated for those calls for which the application does not already
have handles, and the application receives monitor privilege to those calls.

Function Details

LONG WINAPI lineGetConfRelatedCalls(
 HCALL hCall,
 LPLINECALLLIST lpCallList
);

Parameters

hCall

A handle to a call. This represents either a conference call or a participant call in a conference call.
For a conference parent call, the call state of hCall can be any state. For a conference participant
call, it must be in the conferenced state.

lpCallList

A pointer to a variably sized data structure of type LINECALLLIST. Upon successful completion
of the request, call handles to all calls in the conference call return in this structure. The first call in
the list represents the conference call, the other calls represent the participant calls. The application
receives monitor privilege to those calls for which it does not already have handles; the privileges
to calls in the list for which the application already has handles remains unchanged. Prior to calling
lineGetConfRelatedCalls, the application should set the dwTotalSize member of this structure to
indicate the amount of memory that is available to TAPI for returning information.

Return Values

Returns zero if request succeeds or a negative number if an error occurs. Possible return values follow:

 • LINEERR_INVALCALLHANDLE

 • LINEERR_OPERATIONFAILED

 • LINEERR_NOCONFERENCE

 • LINEERR_RESOURCEUNAVAIL

 • LINEERR_INVALPOINTER

 • LINEERR_STRUCTURETOOSMALL

 • LINEERR_NOMEM

 • LINEERR_UNINITIALIZED

lineGetDevCaps
The lineGetDevCaps function queries a specified line device to determine its telephony capabilities. The
returned information applies for all addresses on the line device.
5-22
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
Function Details

LONG lineGetDevCaps(
 HLINEAPP hLineApp,
 DWORD dwDeviceID,
 DWORD dwAPIVersion,
 DWORD dwExtVersion,
 LPLINEDEVCAPS lpLineDevCaps
);

Parameters

hLineApp

The handle by which the application is registered with TAPI.

dwDeviceID

The line device to be queried.

dwAPIVersion

The version number, obtained by lineNegotiateAPIVersion, of the API to be used. The high-order
word contains the major version number; the low-order word contains the minor version number.

dwExtVersion

The version number, obtained by lineNegotiateExtVersion, of the extensions to be used. It can be
zero if no device-specific extensions are to be used. Otherwise, the high-order word contains the
major version number; the low-order word contains the minor version number.

lpLineDevCaps

A pointer to a variably sized structure of type LINEDEVCAPS. Upon successful completion of the
request, this structure gets filled with line device capabilities information. Prior to calling
lineGetDevCaps, the application should set the dwTotalSize member of this structure to indicate the
amount of memory that is available to TAPI for returning information.

lineGetID
The lineGetID function returns a device identifier for the specified device class that is associated with
the selected line, address, or call.

Function Details
LONG lineGetID(
 HLINE hLine,
 DWORD dwAddressID,
 HCALL hCall,
 DWORD dwSelect,
 LPVARSTRING lpDeviceID,
 LPCSTR lpszDeviceClass
);

Parameters

hLine

A handle to an open line device.
5-23
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
dwAddressID

An address on the given open line device.

hCall

A handle to a call.

dwSelect

Specifies whether the requested device identifier is associated with the line, address or a single call.
The dwSelect parameter can only have a single flag set. This parameter uses the following
LINECALLSELECT_ constants:

 – LINECALLSELECT_LINE Selects the specified line device. The hLine parameter must be a
valid line handle; hCall and dwAddressID are ignored.

 – LINECALLSELECT_ADDRESS Selects the specified address on the line. Both hLine and
dwAddressID must be valid; hCall is ignored.

 – LINECALLSELECT_CALL Selects the specified call. hCall must be valid; hLine and
dwAddressID are both ignored.

lpDeviceID

A pointer to a memory location of type VARSTRING, where the device identifier is returned. Upon
successful completion of the request, the device identifier fills this location. The format of the
returned information depends on the method that the device class API uses for naming devices.
Before calling lineGetID, the application must set the dwTotalSize member of this structure to
indicate the amount of memory that is available to TAPI for returning information.

lpszDeviceClass

A pointer to a NULL-terminated ASCII string that specifies the device class of the device whose
identifier is requested. Device classes include wave/in, wave/out and tapi/line.

Valid device class strings are those that are used in the SYSTEM.INI section to identify device
classes.

lineGetLineDevStatus
The lineGetLineDevStatus function enables an application to query the specified open line device for its
current status.

Function Details
LONG lineGetLineDevStatus(
 HLINE hLine,
 LPLINEDEVSTATUS lpLineDevStatus
);

Parameters

hLine

A handle to the open line device to be queried.

lpLineDevStatus
5-24
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
A pointer to a variably sized data structure of type LINEDEVSTATUS. Upon successful completion
of the request, the device status of the line fills this structure. Prior to calling lineGetLineDevStatus,
the application should set the dwTotalSize member of this structure to indicate the amount of
memory that is available to TAPI for returning information.

lineGetMessage
The lineGetMessage function returns the next TAPI message that is queued for delivery to an application
that is using the Event Handle notification mechanism (see lineInitializeEx, page 5-33 for more
information).

Function Details
LONG WINAPI lineGetMessage(
 HLINEAPP hLineApp,
 LPLINEMESSAGE lpMessage,
 DWORD dwTimeout
);

Parameters

hLineApp

The handle that lineInitializeEx returns. Ensure that the application has set the
LINEINITIALIZEEXOPTION_USEEVENT option in the dwOptions member of the
LINEINITIALIZEEXPARAMS structure.

lpMessage

A pointer to a LINEMESSAGE structure. Upon successful return from this function, the structure
contains the next message that had been queued for delivery to the application.

dwTimeout

The time-out interval, in milliseconds. The function returns if the interval elapses, even if no
message can be returned. If dwTimeout is zero, the function checks for a queued message and
returns immediately. If dwTimeout is INFINITE, the function time-out interval never elapses.

Return Values

Returns zero if the request succeeds or returns a negative number if an error occurs. Possible return
values follow:

 • LINEERR_INVALAPPHANDLE

 • LINEERR_OPERATIONFAILED

 • LINEERR_INVALPOINTER

 • LINEERR_NOMEM
5-25
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
lineGetNewCalls
The lineGetNewCalls function returns call handles to calls on a specified line or address for which the
application currently does not have handles. The application receives monitor privilege for these calls.

An application can use lineGetNewCalls to obtain handles to calls for which it currently has no handles.
The application can select the calls for which handles are to be returned by basing this selection on scope
(calls on a specified line, or calls on a specified address). For example, an application can request call
handles to all calls on a given address for which it currently has no handle.

Function Details

LONG WINAPI lineGetNewCalls(
 HLINE hLine,
 DWORD dwAddressID,
 DWORD dwSelect,
 LPLINECALLLIST lpCallList
);

Parameters

hLine

A handle to an open line device.

dwAddressID

An address on the given open line device. An address identifier permanently associates with an
address; the identifier remains constant across operating system upgrades.

dwSelect

The selection of calls that are requested. This parameter uses one and only one of the
LINECALLSELECT_ Constants.

lpCallList

A pointer to a variably sized data structure of type LINECALLLIST. Upon successful completion
of the request, call handles to all selected calls get returned in this structure. Prior to calling
lineGetNewCalls, the application should set the dwTotalSize member of this structure to indicate
the amount of memory that is available to TAPI for returning information.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values
follow:

 • LINEERR_INVALADDRESSID

 • LINEERR_OPERATIONFAILED

 • LINEERR_INVALCALLSELECT

 • LINEERR_RESOURCEUNAVAIL

 • LINEERR_INVALLINEHANDLE

 • LINEERR_STRUCTURETOOSMALL

 • LINEERR_INVALPOINTER
5-26
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
 • LINEERR_UNINITIALIZED

 • LINEERR_NOMEM

lineGetNumRings
The lineGetNumRings function determines the number of rings that an incoming call on the given
address should ring before the call is answered.

Function Details

LONG WINAPI lineGetNumRings(
 HLINE hLine,
 DWORD dwAddressID,
 LPDWORD lpdwNumRings
);

Parameters

hLine

A handle to the open line device.

dwAddressID

An address on the line device. An address identifier permanently associates with an address; the
identifier remains constant across operating system upgrades.

lpdwNumRings

The number of rings that is the minimum of all current lineSetNumRings requests.

Return Values

Returns zero if request succeeds or a negative number if an error occurs. Possible return values follow:

 • LINEERR_INVALADDRESSID

 • LINEERR_OPERATIONFAILED

 • LINEERR_INVALLINEHANDLE

 • LINEERR_RESOURCEUNAVAIL

 • LINEERR_INVALPOINTER

 • LINEERR_UNINITIALIZED

 • LINEERR_NOMEM

lineGetProviderList
The lineGetProviderList function returns a list of service providers that are currently installed in the
telephony system.
5-27
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
Function Details

LONG WINAPI lineGetProviderList(
 DWORD dwAPIVersion,
 LPLINEPROVIDERLIST lpProviderList
);

Parameters

dwAPIVersion

The highest version of TAPI that the application supports (not necessarily the value that
lineNegotiateAPIVersion negotiates on some particular line device).

lpProviderList

A pointer to a memory location where TAPI can return a LINEPROVIDERLIST structure. Prior to
calling lineGetProviderList, the application should set the dwTotalSize member of this structure to
indicate the amount of memory that is available to TAPI for returning information.

Return Values

Returns zero if request succeeds or a negative number if an error occurs. Possible return values follow:

 • LINEERR_INCOMPATIBLEAPIVERSION

 • LINEERR_NOMEM

 • LINEERR_INIFILECORRUPT

 • LINEERR_OPERATIONFAILED

 • LINEERR_INVALPOINTER

 • LINEERR_STRUCTURETOOSMALL

lineGetRequest
The lineGetRequest function retrieves the next by-proxy request for the specified request mode.

Function Details
LONG WINAPI lineGetRequest(
 HLINEAPP hLineApp,
 DWORD dwRequestMode,
 LPVOID lpRequestBuffer
);

Parameters

hLineApp

 The application's usage handle for the line portion of TAPI.

dwRequestMode

The type of request that is to be obtained. dwRequestMode can have only one bit set. This parameter
uses one and only one of the LINEREQUESTMODE_ Constants.
5-28
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
lpRequestBuffer

A pointer to a memory buffer where the parameters of the request are to be placed. The size of the
buffer and the interpretation of the information that is placed in the buffer depends on the request
mode. The application-allocated buffer provides sufficient size to hold the request. If
dwRequestMode is LINEREQUESTMODE_MAKECALL, interpret the content of the request
buffer by using the LINEREQMAKECALL structure. If dwRequestMode is
LINEREQUESTMODE_MEDIACALL, interpret the content of the request buffer by using the
LINEREQMEDIACALL structure.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values
follow:

 • LINEERR_INVALAPPHANDLE

 • LINEERR_NOTREGISTERED

 • LINEERR_INVALPOINTER

 • LINEERR_OPERATIONFAILED

 • LINEERR_INVALREQUESTMODE

 • LINEERR_RESOURCEUNAVAIL

 • LINEERR_NOMEM

 • LINEERR_UNINITIALIZED

 • LINEERR_NOREQUEST

lineGetStatusMessages
The lineGetStatusMessages function enables an application to query the notification messages that the
application receives for events related to status changes for the specified line or any of its addresses.

Function Details
LONG WINAPI lineGetStatusMessages(
 HLINE hLine,
 LPDWORD lpdwLineStates,
 LPDWORD lpdwAddressStates
);

Parameters

hLine

Handle to the line device.

lpdwLineStates

A bit array that identifies the line device status changes for which a message is to be sent to the
application. If a flag is TRUE, that message is enabled; if FALSE, it is disabled. This parameter uses
one or more LINEDEVSTATE_ Constants.
5-29
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
lpdwAddressStates

A bit array that identifies for which address status changes a message is to be sent to the application.
If a flag is TRUE, that message is enabled; if FALSE, disabled. This parameter uses one or more
LINEADDRESSSTATE_ Constants.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values
follow:

 • LINEERR_INVALLINEHANDLE

 • LINEERR_OPERATIONFAILED

 • LINEERR_INVALPOINTER

 • LINEERR_RESOURCEUNAVAIL

 • LINEERR_NOMEM

 • LINEERR_UNINITIALIZED

lineGetTranslateCaps
The lineGetTranslateCaps function returns address translation capabilities.

Function Details

LONG WINAPI lineGetTranslateCaps(
 HLINEAPP hLineApp,
 DWORD dwAPIVersion,
 LPLINETRANSLATECAPS lpTranslateCaps
);

Parameters

hLineApp

The application handle that lineInitializeEx returns. If an application has not yet called the
lineInitializeEx function, it can set the hLineApp parameter to NULL.

dwAPIVersion

The highest version of TAPI that the application supports (not necessarily the value that
lineNegotiateAPIVersion negotiates on some particular line device).

lpTranslateCaps

A pointer to a location to which a LINETRANSLATECAPS structure is loaded. Prior to calling
lineGetTranslateCaps, the application should set the dwTotalSize member of this structure to
indicate the amount of memory that is available to TAPI for returning information.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values
follow:
5-30
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
 • LINEERR_INCOMPATIBLEAPIVERSION

 • LINEERR_NOMEM

 • LINEERR_INIFILECORRUPT

 • LINEERR_OPERATIONFAILED

 • LINEERR_INVALAPPHANDLE

 • LINEERR_RESOURCEUNAVAIL

 • LINEERR_INVALPOINTER

 • LINEERR_STRUCTURETOOSMALL

 • LINEERR_NODRIVER.

lineHandoff
The lineHandoff function gives ownership of the specified call to another application. Specify the
application either directly by its file name or indirectly as the highest priority application that handles
calls of the specified media mode.

Function Details

LONG WINAPI lineHandoff(
 HCALL hCall,
 LPCSTR lpszFileName,
 DWORD dwMediaMode
);

Parameters

hCall

A handle to the call to be handed off. The application must be an owner of the call. The call state of
hCall can be any state.

lpszFileName

A pointer to a null-terminated string. If this pointer parameter is non-NULL, it contains the file name
of the application that is the target of the handoff. If NULL, the handoff target represents the highest
priority application that has opened the line for owner privilege for the specified media mode. A
valid file name does not include the path of the file.

dwMediaMode

The media mode that is used to identify the target for the indirect handoff. The dwMediaMode
parameter indirectly identifies the target application that is to receive ownership of the call. This
parameter gets ignored if lpszFileName is not NULL. This parameter uses one and only one of the
LINEMEDIAMODE_ Constants.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values
follow:

 • LINEERR_INVALCALLHANDLE
5-31
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
 • LINEERR_OPERATIONFAILED

 • LINEERR_INVALMEDIAMODE

 • LINEERR_TARGETNOTFOUND

 • LINEERR_INVALPOINTER

 • LINEERR_TARGETSELF

 • LINEERR_NOMEM

 • LINEERR_UNINITIALIZED

 • LINEERR_NOTOWNER

lineHold
The lineHold function places the specified call on hold.

Function Details

LONG lineHold(
 HCALL hCall
);

Parameter

hCall

A handle to the call that is to be placed on hold. Ensure that the application is an owner of the call
and the call state of hCall is connected.

lineInitialize
Although the lineInitialize function is obsolete, tapi.dll and tapi32.dll continue to export it for backward
compatibility with applications that are using API versions 1.3 and 1.4.

Function Details

LONG WINAPI lineInitialize(
 LPHLINEAPP lphLineApp,
 HINSTANCE hInstance,
 LINECALLBACK lpfnCallback,
 LPCSTR lpszAppName,
 LPDWORD lpdwNumDevs
);

Parameters

lphLineApp

A pointer to a location that is filled with the application's usage handle for TAPI.

hInstance
5-32
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
The instance handle of the client application or DLL.

lpfnCallback

The address of a callback function that is invoked to determine status and events on the line device,
addresses, or calls. For more information, see lineCallbackFunc.

lpszAppName

A pointer to a null-terminated text string that contains only displayable characters. If this parameter
is not NULL, it contains an application-supplied name for the application. The LINECALLINFO
structure provides this name to indicate, in a user-friendly way, which application originated,
originally accepted, or answered the call. This information can prove useful for call logging
purposes. If lpszAppName is NULL, the application's file name gets used instead.

lpdwNumDevs

A pointer to a DWORD-sized location. Upon successful completion of this request, this location
gets filled with the number of line devices that is available to the application.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values
follow:

 • LINEERR_INVALAPPNAME

 • LINEERR_OPERATIONFAILED

 • LINEERR_INIFILECORRUPT

 • LINEERR_RESOURCEUNAVAIL

 • LINEERR_INVALPOINTER

 • LINEERR_REINIT

 • LINEERR_NODRIVER

 • LINEERR_NODEVICE

 • LINEERR_NOMEM

 • LINEERR_NOMULTIPLEINSTANCE.

lineInitializeEx
The lineInitializeEx function initializes the use of TAPI by the application for the subsequent use of the
line abstraction. It registers the specified notification mechanism of the application and returns the
number of line devices that are available. A line device represents any device that provides an
implementation for the line-prefixed functions in the telephony API.

Function Details

LONG lineInitializeEx(
 LPHLINEAPP lphLineApp,
 HINSTANCE hInstance,
 LINECALLBACK lpfnCallback,
 LPCSTR lpszFriendlyAppName,
 LPDWORD lpdwNumDevs,
 LPDWORD lpdwAPIVersion,
5-33
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
 LPLINEINITIALIZEEXPARAMS lpLineInitializeExParams
);

Parameters

lphLineApp

A pointer to a location that is filled with the TAPI usage handle for the application.

hInstance

The instance handle of the client application or DLL. The application or DLL can pass NULL for
this parameter, in which case TAPI uses the module handle of the root executable of the process (for
purposes of identifying call handoff targets and media mode priorities).

lpfnCallback

The address of a callback function that is invoked to determine status and events on the line device,
addresses, or calls, when the application is using the “hidden window” method of event notification.
This parameter gets ignored and should be set to NULL when the application chooses to use the
“event handle” or “completion port” event notification mechanisms.

lpszFriendlyAppName

A pointer to a NULL-terminated ASCII string that contains only standard ASCII characters. If this
parameter is not NULL, it contains an application-supplied name for the application. The
LINECALLINFO structure provides this name to indicate, in a user-friendly way, which application
originated, originally accepted, or answered the call. This information can prove useful for
call-logging purposes. If lpszFriendlyAppName is NULL, the module filename of the application
gets used instead (as returned by the Windows API GetModuleFileName).

lpdwNumDevs

A pointer to a DWORD-sized location. Upon successful completion of this request, this location
gets filled with the number of line devices that are available to the application.

lpdwAPIVersion

A pointer to a DWORD-sized location. The application must initialize this DWORD, before calling
this function, to the highest API version that it is designed to support (for example, the same value
that it would pass into dwAPIHighVersion parameter of lineNegotiateAPIVersion). Make sure that
artificially high values are not used; ensure that the value is set to 0x00020000. TAPI translates any
newer messages or structures into values or formats that the application supports. Upon successful
completion of this request, this location is filled with the highest API version that TAPI supports,
which allows the application to adapt to being installed on a system with an older TAPI version.

lpLineInitializeExParams

A pointer to a structure of type LINEINITIALIZEEXPARAMS that contains additional parameters
that are used to establish the association between the application and TAPI (specifically, the selected
event notification mechanism of the application and associated parameters).

lineMakeCall
The lineMakeCall function places a call on the specified line to the specified destination address.
Optionally, you can specify call parameters if anything but default call setup parameters are requested.
5-34
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
Function Details
LONG lineMakeCall(
HLINE hLine,
LPHCALL lphCall,
LPCSTR lpszDestAddress,
DWORD dwCountryCode,
LPLINECALLPARAMS const lpCallParams
);
typedef struct LineParams {
DWORD FeaturePriority;
}LINE_PARAMS;

Parameters

hLine

A handle to the open line device on which a call is to be originated.

lphCall

A pointer to an HCALL handle. The handle is only valid after the application receives
LINE_REPLY message that indicates that the lineMakeCall function successfully completed. Use
this handle to identify the call when you invoke other telephony operations on the call. The
application initially acts as the sole owner of this call. This handle registers as void if the reply
message returns an error (synchronously or asynchronously).

lpszDestAddress

A pointer to the destination address. This parameter follows the standard dialable number format.
This pointer can be NULL for non-dialed addresses or when all dialing is performed by using
lineDial. In the latter case, lineMakeCall allocates an available call appearance that would typically
remain in the dial tone state until dialing begins.

dwCountryCode

The country code of the called party. If a value of 0 is specified, the implementation uses a default.

lpCallParams

The dwNoAnswerTimeout attribute of the lpCallParams field is checked and if specified as
non-zero, automatically disconnects a call if not answered after the specified time.

Note Beginning with Cisco Unified Communications Manager Release 7.0(1), feature priority is introduced
for DoNotDisturb-Reject feature. Feature priority can be specified in DevSpecific part of CallParams.
as typedef struct LineParams {DWORD FeaturePriority; } LINE_PARAMS;.

lineMonitorDigits
The lineMonitorDigits function enables and disables the unbuffered detection of digits that are received
on the call. Each time that a digit of the specified digit mode is detected, a message gets sent to the
application to indicate which digit has been detected.

Function Details

LONG lineMonitorDigits(
5-35
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
 HCALL hCall,
 DWORD dwDigitModes
);

Parameters

hCall

A handle to the call on which digits are to be detected. The call state of hCall can be any state except
idle or disconnected.

dwDigitModes

The digit mode or modes that are to be monitored. If dwDigitModes is zero, the system cancels digit
monitoring. This parameter which can have multiple flags set, uses the following
LINEDIGITMODE_ constant:

LINEDIGITMODE_DTMF - Detect digits as DTMF tones. Valid digits for DTMF include ‘0’
through ‘9’, ‘*’, and ‘#’.

lineMonitorTones
The lineMonitorTones function enables and disables the detection of inband tones on the call. Each time
that a specified tone is detected, a message gets sent to the application.

Function Details
LONG lineMonitorTones(
 HCALL hCall,
 LPLINEMONITORTONE const lpToneList,
 DWORD dwNumEntries
);

Parameters

hCall

A handle to the call on which tones are to be detected. The call state of hCall can be any state except
idle.

lpToneList

A list of tones to be monitored, of type LINEMONITORTONE. Each tone in this list has an
application-defined tag field that is used to identify individual tones in the list to report a tone
detection. Calling this operation with either NULL for lpToneList or with another tone list cancels
or changes tone monitoring in progress.

dwNumEntries

The number of entries in lpToneList. This parameter gets ignored if lpToneList is NULL.

lineNegotiateAPIVersion
The lineNegotiateAPIVersion function allows an application to negotiate an API version to use. The
Cisco Unified TSP supports TAPI 2.0 and 2.1.
5-36
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
Function Details

LONG lineNegotiateAPIVersion(
 HLINEAPP hLineApp,
 DWORD dwDeviceID,
 DWORD dwAPILowVersion,
 DWORD dwAPIHighVersion,
 LPDWORD lpdwAPIVersion,
 LPLINEEXTENSIONID lpExtensionID
);

Parameters

hLineApp

The handle by which the application is registered with TAPI.

dwDeviceID

The line device to be queried.

dwAPILowVersion

The least recent API version with which the application is compliant. The high-order word specifies
the major version number; the low-order word specifies the minor version number.

dwAPIHighVersion

The most recent API version with which the application is compliant. The high-order word specifies
the major version number; the low-order word specifies the minor version number.

lpdwAPIVersion

A pointer to a DWORD-sized location that contains the API version number that was negotiated. If
negotiation succeeds, this number falls in the range between dwAPILowVersion and
dwAPIHighVersion.

lpExtensionID

A pointer to a structure of type LINEEXTENSIONID. If the service provider for the specified
dwDeviceID supports provider-specific extensions, upon a successful negotiation, this structure gets
filled with the extension identifier of these extensions. This structure contains all zeros if the line
provides no extensions. An application can ignore the returned parameter if it does not use
extensions.

The Cisco Unified TSP extensionID specifies 0x8EBD6A50, 0x138011d2, 0x905B0060,
0xB03DD275.

lineNegotiateExtVersion
The lineNegotiateExtVersion function allows an application to negotiate an extension version to use
with the specified line device. Do not call this operation if the application does not support extensions.

Function Details

LONG lineNegotiateExtVersion(
 HLINEAPP hLineApp,
 DWORD dwDeviceID,
 DWORD dwAPIVersion,
 DWORD dwExtLowVersion,
 DWORD dwExtHighVersion,
5-37
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
 LPDWORD lpdwExtVersion
);

Parameters

hLineApp

The handle by which the application is registered with TAPI.

dwDeviceID

The line device to be queried.

dwAPIVersion

The API version number that was negotiated for the specified line device by using
lineNegotiateAPIVersion.

dwExtLowVersion

The least recent extension version of the extension identifier that lineNegotiateAPIVersion returns
and with which the application is compliant. The high-order word specifies the major version
number; the low-order word specifies the minor version number.

dwExtHighVersion

The most recent extension version of the extension identifier that lineNegotiateAPIVersion returns
and with which the application is compliant. The high-order word specifies the major version
number; the low-order word specifies the minor version number.

lpdwExtVersion

A pointer to a DWORD-sized location that contains the extension version number that was
negotiated. If negotiation succeeds, this number falls between dwExtLowVersion and
dwExtHighVersion.

lineOpen
The lineOpen function opens the line device that its device identifier specifies and returns a line handle
for the corresponding opened line device. Subsequent operations on the line device use this line handle.

Function Details

LONG lineOpen(
 HLINEAPP hLineApp,
 DWORD dwDeviceID,
 LPHLINE lphLine,
 DWORD dwAPIVersion,
 DWORD dwExtVersion,
 DWORD dwCallbackInstance,
 DWORD dwPrivileges,
 DWORD dwMediaModes,
 LPLINECALLPARAMS const lpCallParams
);

Parameters

hLineApp

The handle by which the application is registered with TAPI.
5-38
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
dwDeviceID

Identifies the line device to be opened. It can either be a valid device identifier or the value

LINEMAPPER

Note The Cisco Unified TSP does not support LINEMAPPER at this time.

lphLine

A pointer to an HLINE handle that is then loaded with the handle that represents the opened line
device. Use this handle to identify the device when you are invoking other functions on the open line
device.

dwAPIVersion

The API version number under which the application and Telephony API operate. Obtain this
number with lineNegotiateAPIVersion.

dwExtVersion

The extension version number under which the application and the service provider operate. This
number remains zero if the application does not use any extensions. Obtain this number with
lineNegotiateExtVersion.

dwCallbackInstance

User-instance data that is passed back to the application with each message that is associated with
this line or with addresses or calls on this line. The Telephony API does not interpret this parameter.

dwPrivileges

The privilege that the application wants for the calls for which it is notified. This parameter can be
a combination of the LINECALLPRIVILEGE_ constants. For applications that are using TAPI
version 2.0 or later, values for this parameter can also be combined with the LINEOPENOPTION_
constants:

 – LINECALLPRIVILEGE_NONE - The application can make only outgoing calls.

 – LINECALLPRIVILEGE_MONITOR - The application can monitor only incoming and
outgoing calls.

 – LINECALLPRIVILEGE_OWNER - The application can own only incoming calls of the types
that are specified in dwMediaModes.

 – LINECALLPRIVILEGE_MONITOR + LINECALLPRIVILEGE_OWNER - The application
can own only incoming calls of the types that are specified in dwMediaModes, but if the
application does not represent an owner of a call, it acts as a monitor.

 – Other flag combinations return the LINEERR_INVALPRIVSELECT error.

dwMediaModes

The media mode or modes of interest to the application. Use this parameter to register the
application as a potential target for incoming call and call handoff for the specified media mode.
This parameter proves meaningful only if the bit LINECALLPRIVILEGE_OWNER in dwPrivileges
is set (and ignored if it is not).

This parameter uses the following LINEMEDIAMODE_ constant:
5-39
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
 – LINEMEDIAMODE_INTERACTIVEVOICE - The application can handle calls of the
interactive voice media type; that is, it manages voice calls with the user on this end of the call.
Use this parameter for third-party call control of physical phones and CTI port and CTI route
point devices that other applications opened.

 – LINEMEDIAMODE_AUTOMATEDVOICE - Voice energy exists on the call. An automated
application locally handles the voice. This represents first-party call control and is used with
CTI port and CTI route point devices.

lpCallParams

The dwNoAnswerTimeout attribute of the lpCallParams field is checked and if it is non-zero,
automatically disconnects a call if it is not answered after the specified time.

linePark
The linePark function parks the specified call according to the specified park mode.

Function Details

LONG WINAPI linePark(
HCALL hCall,
DWORD dwParkMode,
LPCSTR lpszDirAddress,
LPVARSTRING lpNonDirAddress

);

Parameters

hCall

Handle to the call to be parked. The application must act as an owner of the call. The call state of
hcall must be connected.

dwParkMode

Park mode with which the call is parked. This parameter can have only a single flag set and uses one
of the LINEPARKMODE_Constants.

Note Ensure that LINEPARKMODE_Constants is set to LINEPARKMODE_NONDIRECTED.

lpszDirAddress

Pointer to a null-terminated string that indicates the address where the call is to be parked when
directed park is used. The address specifies in dialable number format. This parameter gets ignored
for nondirected park.

Note This parameter gets ignored.

lpNonDirAddress

Pointer to a structure of type VARSTRING. For nondirected park, the address where the call is
parked gets returned in this structure. This parameter gets ignored for directed park. Within the
VARSTRING structure, ensure that dwStringFormat is set to STRINGFORMAT_ASCII (an ASCII
5-40
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
string buffer that contains a null-terminated string), and the terminating NULL must be accounted
for in the dwStringSize. Before calling linePark, the application must set the dwTotalSize member
of this structure to indicate the amount of memory that is available to TAPI for returning
information.

linePrepareAddToConference
The linePrepareAddToConference function prepares an existing conference call for the addition of
another party.

If LINEERR_INVALLINESTATE is returned, that means that the line is currently not in a state in which
this operation can be performed. The dwLineFeatures member includes a list of currently valid
operations (of the type LINEFEATURE) in the LINEDEVSTATUS structure. (Calling
lineGetLineDevStatus updates the information in LINEDEVSTATUS.)

Obtain a conference call handle with lineSetupConference or with lineCompleteTransfer that is resolved
as a three-way conference call. The linePrepareAddToConference function typically places the existing
conference call in the onHoldPendingConference state and creates a consultation call that can be added
later to the existing conference call with lineAddToConference.

You can cancel the consultation call by using lineDrop. You may also be able to swap an application
between the consultation call and the held conference call with lineSwapHold.

Function Details

LONG WINAPI linePrepareAddToConference(
 HCALL hConfCall,
 LPHCALL lphConsultCall,
 LPLINECALLPARAMS const lpCallParams
);

Parameters

hConfCall

A handle to a conference call. The application must act as an owner of this call. Ensure that the call
state of hConfCall is connected.

lphConsultCall

A pointer to an HCALL handle. This location then gets loaded with a handle that identifies the
consultation call to be added. Initially, the application serves as the sole owner of this call.

lpCallParams

A pointer to call parameters that gets used when the consultation call is established. You can set this
parameter to NULL if no special call setup parameters are desired.

Return Values

Returns a positive request identifier if the function completes asynchronously, or a negative number if
an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY message specifies zero
if the function succeeds, or it is a negative number if an error occurs.

Possible return values follow:

 • LINEERR_BEARERMODEUNAVAIL
5-41
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
 • LINEERR_INVALPOINTER

 • LINEERR_CALLUNAVAIL

 • LINEERR_INVALRATE

 • LINEERR_CONFERENCEFULL

 • LINEERR_NOMEM

 • LINEERR_INUSE

 • LINEERR_NOTOWNER

 • LINEERR_INVALADDRESSMODE

 • LINEERR_OPERATIONUNAVAIL

 • LINEERR_INVALBEARERMODE

 • LINEERR_OPERATIONFAILED

 • LINEERR_INVALCALLPARAMS

 • LINEERR_RATEUNAVAIL

 • LINEERR_INVALCALLSTATE

 • LINEERR_RESOURCEUNAVAIL

 • LINEERR_INVALCONFCALLHANDLE

 • LINEERR_STRUCTURETOOSMALL

 • LINEERR_INVALLINESTATE

 • LINEERR_USERUSERINFOTOOBIG

 • LINEERR_INVALMEDIAMODE

 • LINEERR_UNINITIALIZED

lineRedirect
The lineRedirect function redirects the specified offered or accepted call to the specified destination
address.

Note If the application tries to redirect a call to an address that requires a FAC, CMC, or both, the lineRedirect
function returns an error. If a FAC is required, the TSP returns the message
LINEERR_FACREQUIRED. If a CMC is required, the TSP returns the message
LINEERR_CMCREQUIRED. If both a FAC and a CMC are required, the TSP returns the message
LINEERR_FACANDCMCREQUIRED. An application that wants to redirect a call to an address that
requires a FAC, CMC, or both, should use the lineDevSpecific RedirectFACCMC function.

Function Details

LONG lineRedirect(
 HCALL hCall,
 LPCSTR lpszDestAddress,
 DWORD dwCountryCode
);
5-42
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
Parameters

hCall

A handle to the call to be redirected. The application must act as an owner of the call. The call state
of hCall must be offering, accepted, or connected.

Note The Cisco Unified TSP supports redirecting of calls in the connected call state.

lpszDestAddress

A pointer to the destination address. This follows the standard dialable number format.

dwCountryCode

The country code of the party to which the call is redirected. If a value of 0 is specified, the
implementation uses a default.

lineRegisterRequestRecipient
The lineRegisterRequestRecipient function registers the invoking application as a recipient of requests
for the specified request mode.

Function Details

LONG WINAPI lineRegisterRequestRecipient(
 HLINEAPP hLineApp,
 DWORD dwRegistrationInstance,
 DWORD dwRequestMode,
 DWORD bEnable
);

Parameters

hLineApp

The application's usage handle for the line portion of TAPI.

dwRegistrationInstance

An application-specific DWORD that is passed back as a parameter of the LINE_REQUEST
message. This message notifies the application that a request is pending. This parameter gets
ignored if bEnable is set to zero. TAPI examines this parameter only for registration, not for
deregistration. The dwRegistrationInstance value that is used while deregistering need not match the
dwRegistrationInstance that is used while registering for a request mode.

dwRequestMode

The type or types of request for which the application registers. This parameter uses one or more
LINEREQUESTMODE_ Constants.

bEnable

If TRUE, the application registers the specified request modes; if FALSE, the application
deregisters for the specified request modes.
5-43
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values
follow:

 • LINEERR_INVALAPPHANDLE

 • LINEERR_OPERATIONFAILED

 • LINEERR_INVALREQUESTMODE

 • LINEERR_RESOURCEUNAVAIL

 • LINEERR_NOMEM

 • LINEERR_UNINITIALIZED

lineRemoveFromConference
The lineRemoveFromConference function removes a specified call from the conference call to which it
currently belongs. The remaining calls in the conference call are unaffected.

Function Details

LONG WINAPI lineRemoveFromConference(
 HCALL hCall
);

Parameters

hCall

Handle to the call that is to be removed from the conference. The application must be an owner of
this call. The call state of hCall must be conference.

Return Values

Returns a positive request identifier if the function is completed asynchronously, or a negative number
if an error occurs. The dwParam2 parameter of the corresponding LINE_REPLY message is zero if the
function succeeds or it is a negative number if an error occurs. The following table shows the return
values for this function:

Value Description

LINEERR_INVALCALLHANDLE The handle to the call that is to be removed is
invalid.

LINEERR_OPERATIONUNAVAIL The operation is unavailable.

LINEERR_INVALCALLSTATE The call state is something other than
conferenced.

LINEERR_OPERATIONFAILED The operation failed.

LINEERR_NOMEM Not enough memory.

LINEERR_RESOURCEUNAVAIL The resources are unavailable.
5-44
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
lineRemoveProvider
The lineRemoveProvider function removes an existing telephony service provider from the system.

Function Details
LONG WINAPI lineRemoveProvider(
 DWORD dwPermanentProviderID,
 HWND hwndOwner
);

Parameters

dwPermanentProviderID

The permanent provider identifier of the service provider that is to be removed.

hwndOwner

A handle to a window to which any dialog boxes that need to be displayed as part of the removal
process (for example, a confirmation dialog box by the service provider's TSPI_providerRemove
function) would be attached. The parameter can be a NULL value to indicate that any window that
is created during the function should have no owner window.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values
follow:

 • LINEERR_INIFILECORRUPT

 • LINEERR_NOMEM

 • LINEERR_INVALPARAM

 • LINEERR_OPERATIONFAILED

lineSetAppPriority
The lineSetAppPriority function allows an application to set its priority in the handoff priority list for a
particular media type or Assisted Telephony request mode or to remove itself from the priority list.

Function Details
LONG WINAPI lineSetAppPriority(
 LPCSTR lpszAppFilename,
 DWORD dwMediaMode,
 LPLINEEXTENSIONID lpExtensionID,
 DWORD dwRequestMode,
 LPCSTR lpszExtensionName,

LINEERR_NOTOWNER The application is not the owner of this call.

LINEERR_UNINITIALIZED A parameter is uninitialized.

Value Description
5-45
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
 DWORD dwPriority
);

Parameters

lpszAppFilename

A pointer to a string that contains the application executable module filename (without directory
information). In TAPI version 2.0 or later, the parameter can specify a filename in either long or 8.3
filename format.

dwMediaMode

The media type for which the priority of the application is to be set. The value can be one
LINEMEDIAMODE_ Constant; only a single bit may be on. Use the value zero to set the
application priority for Assisted Telephony requests.

lpExtensionID

A pointer to a structure of type LINEEXTENSIONID. This parameter gets ignored.

dwRequestMode

If the dwMediaMode parameter is zero, this parameter specifies the Assisted Telephony request
mode for which priority is to be set. It must be either LINEREQUESTMODE_MAKECALL or
LINEREQUESTMODE_MEDIACALL. This parameter gets ignored if dwMediaMode is nonzero.

lpszExtensionName

This parameter gets ignored.

dwPriority

The new priority for the application. If the value 0 is passed, the application gets removed from the
priority list for the specified media or request mode (if it was already not present, no error gets
generated). If the value 1 is passed, the application gets inserted as the highest priority application
for the media or request mode (and removed from a lower-priority position, if it was already in the
list). Any other value generates an error.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values
follow:

 • LINEERR_INIFILECORRUPT

 • LINEERR_INVALREQUESTMODE

 • LINEERR_INVALAPPNAME

 • LINEERR_NOMEM

 • LINEERR_INVALMEDIAMODE

 • LINEERR_OPERATIONFAILED

 • LINEERR_INVALPARAM

 • LINEERR_RESOURCEUNAVAIL

 • LINEERR_INVALPOINTER
5-46
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
lineSetCallPrivilege
The lineSetCallPrivilege function sets the application privilege to the specified privilege.

Function Details

LONG WINAPI lineSetCallPrivilege(
 HCALL hCall,
 DWORD dwCallPrivilege
);

Parameters

hCall

A handle to the call whose privilege is to be set. The call state of hCall can be any state.

dwCallPrivilege

The privilege that the application can have for the specified call. This parameter uses one and only
one LINECALLPRIVILEGE_ Constant.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values
follow:

 • LINEERR_INVALCALLHANDLE

 • LINEERR_OPERATIONFAILED

 • LINEERR_INVALCALLSTATE

 • LINEERR_RESOURCEUNAVAIL

 • LINEERR_INVALCALLPRIVILEGE

 • LINEERR_UNINITIALIZED

 • LINEERR_NOMEM

lineSetNumRings
The lineSetNumRings function sets the number of rings that must occur before an incoming call is
answered. Use this function to implement a toll saver-style function. It allows multiple, independent
applications to each register the number of rings. The function lineGetNumRings returns the minimum
number of rings that are requested. The application that answers incoming calls can use it to determine
the number of rings that it should wait before answering the call.

Function Details

LONG WINAPI lineSetNumRings(
 HLINE hLine,
 DWORD dwAddressID,
 DWORD dwNumRings
);
5-47
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
Parameters

hLine

A handle to the open line device.

dwAddressID

An address on the line device. An address identifier permanently associates with an address; the
identifier remains constant across operating system upgrades.

dwNumRings

The number of rings before a call should be answered to honor the toll saver requests from all
applications.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values
follow:

 • LINEERR_INVALLINEHANDLE

 • LINEERR_OPERATIONFAILED

 • LINEERR_INVALADDRESSID

 • LINEERR_RESOURCEUNAVAIL

 • LINEERR_NOMEM

 • LINEERR_UNINITIALIZED

lineSetStatusMessages
The lineSetStatusMessages function enables an application to specify the notification messages to
receive for events that are related to status changes for the specified line or any of its addresses.

Function Details

LONG lineSetStatusMessages(
 HLINE hLine,
 DWORD dwLineStates,
 DWORD dwAddressStates
);
5-48
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
Parameters

hLine

A handle to the line device.

dwLineStates

A bit array that identifies for which line-device status changes a message is to be sent to the
application. This parameter uses the following LINEDEVSTATE_ constants:

 – LINEDEVSTATE_OTHER - Device-status items other than the following ones changed. The
application should check the current device status to determine which items changed.

 – LINEDEVSTATE_RINGING - The switch tells the line to alert the user. Service providers
notify applications on each ring cycle by sending LINE_LINEDEVSTATE messages that
contain this constant. For example, in the United States, service providers send a message with
this constant every 6 seconds.

 – LINEDEVSTATE_NUMCALLS - The number of calls on the line device changed.

 – LINEDEVSTATE_REINIT - Items changed in the configuration of line devices. To become
aware of these changes (as with the appearance of new line devices) the application should
reinitialize its use of TAPI. New lineInitialize, lineInitializeEx, and lineOpen requests get
denied until applications have shut down their usage of TAPI. The hDevice parameter of the
LINE_LINEDEVSTATE message remains NULL for this state change as it applies to any lines
in the system. Because of the critical nature of LINEDEVSTATE_REINIT, such messages
cannot be masked, so the setting of this bit is ignored, and the messages always get delivered to
the application.

 – LINEDEVSTATE_REMOVED - Indicates that the service provider is removing the device
from the system (most likely through user action, through a control panel or similar utility).
Normally, a LINE_CLOSE message on the device immediately follows
LINE_LINEDEVSTATE message with this value. Subsequent attempts to access the device
prior to TAPI being reinitialized result in LINEERR_NODEVICE being returned to the
application. If a service provider sends a LINE_LINEDEVSTATE message that contains this
value to TAPI, TAPI passes it along to applications that have negotiated TAPI version 1.4 or
later; applications that negotiate a previous TAPI version do not receive any notification.

dwAddressStates

A bit array that identifies for which address status changes a message is to be sent to the application.
This parameter uses the following LINEADDRESSSTATE_ constant:

 – LINEADDRESSSTATE_NUMCALLS - The number of calls on the address changed. This
change results from events such as a new incoming call, an outgoing call on the address, or a
call changing its hold status.

lineSetTollList
The lineSetTollList function manipulates the toll list.

Function Details

LONG WINAPI lineSetTollList(
 HLINEAPP hLineApp,
 DWORD dwDeviceID,
 LPCSTR lpszAddressIn,
5-49
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
 DWORD dwTollListOption
);

Parameters

hLineApp

The application handle that lineInitializeEx returns. If an application has not yet called the
lineInitializeEx function, it can set the hLineApp parameter to NULL.

dwDeviceID

The device identifier for the line device upon which the call is intended to be dialed, so variations
in dialing procedures on different lines can be applied to the translation process.

lpszAddressIn

A pointer to a null-terminated string that contains the address from which the prefix information is
to be extracted for processing. Ensure that this parameter is not NULL, and also ensure that it is in
the canonical address format.

dwTollListOption

The toll list operation to be performed. This parameter uses one and only one of the
LINETOLLLISTOPTION_ Constants.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values
follow:

 • LINEERR_BADDEVICEID

 • LINEERR_NODRIVER

 • LINEERR_INVALAPPHANDLE

 • LINEERR_NOMEM

 • LINEERR_INVALADDRESS

 • LINEERR_OPERATIONFAILED

 • LINEERR_INVALPARAM

 • LINEERR_RESOURCEUNAVAIL

 • LINEERR_INIFILECORRUPT

 • LINEERR_UNINITIALIZED

 • LINEERR_INVALLOCATION

lineSetupConference
The lineSetupConference function initiates a conference for an existing two-party call that the hCall
parameter specifies. A conference call and consult call are established, and the handles return to the
application. Use the consult call to dial the third party and the conference call replaces the initial
two-party call. The application can also specify the destination address of the consult call that will allow
the PBX to dial the call for the application.
5-50
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
Function Details

LONG lineSetupConference (
HCALL hCall,
HLINE hLine,
LPHCALL lphConfCall,
LPHCALL lphConsultCall,
DWORD dwNumParties,
LPLINECALLPARAMS const lpCallParams
);

Parameters

hCall

The handle of the existing two-party call. Ensure that the application is the owner of the call.

hLine

The line on which the initial two-party call was made. This parameter is not used because hCall must
be set.

lphConfCall

A pointer to the conference call handle. The service provider allocates this call and returns the
handle to the application.

lphConsultCall

A pointer to the consult call. If the application does not specify the destination address in the call
parameters, it should use this call handle to dial the consult call. If the destination address is
specified, the consult call will be made using this handle.

dwNumParties

The number of parties in the conference call. Currently the Cisco Unified TAPI Service Provider
supports a three-party conference call.

lpCallParams

The call parameters that are used to set up the consult call. The application can specify the
destination address if it wants the consult call to be dialed for it in the conference setup.

lineSetupTransfer
The lineSetupTransfer function initiates a transfer of the call that the hCall parameter specifies. It
establishes a consultation call, lphConsultCall, on which the party can be dialed that can become the
destination of the transfer. The application acquires owner privilege to the lphConsultCall parameter.

Function Details

LONG lineSetupTransfer(
 HCALL hCall,
 LPHCALL lphConsultCall,
 LPLINECALLPARAMS const lpCallParams
);
5-51
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
Parameters

hCall

The handle of the call to be transferred. Ensure that the application is an owner of the call and ensure
that the call state of hCall is connected.

lphConsultCall

A pointer to an hCall handle. This location is then loaded with a handle that identifies the temporary
consultation call. When setting up a call for transfer, a consultation call automatically gets allocated
that enables lineDial to dial the address that is associated with the new transfer destination of the
call. The originating party can carry on a conversation over this consultation call prior to completing
the transfer. The call state of hConsultCall does not apply.

This transfer procedure may not be valid for some line devices. The application may need to ignore
the new consultation call and remove the hold on an existing held call (using lineUnhold) to identify
the destination of the transfer. On switches that support cross-address call transfer, the consultation
call can exist on a different address than the call that is to be transferred. It may also be necessary
to set up the consultation call as an entirely new call, by lineMakeCall, to the destination of the
transfer. The address capabilities of the call specifies which forms of transfer are available.

lpCallParams

The dwNoAnswerTimeout attribute of the lpCallParams field is checked and, if is non-zero, used to
automatically disconnect a call if it is not answered after the specified time.

lineShutdown
The lineShutdown function shuts down the usage of the line abstraction of the API.

Function Details
LONG lineShutdown(
 HLINEAPP hLineApp
);

Parameters

hLineApp

The usage handle of the application for the line API.

lineTranslateAddress
The lineTranslateAddress function translates the specified address into another format.

Function Details
LONG WINAPI lineTranslateAddress(
 HLINEAPP hLineApp,
 DWORD dwDeviceID,
 DWORD dwAPIVersion,
 LPCSTR lpszAddressIn,
 DWORD dwCard,
 DWORD dwTranslateOptions,
5-52
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
 LPLINETRANSLATEOUTPUT lpTranslateOutput
);

Parameters

hLineApp

The application handle that lineInitializeEx returns. If a TAPI 2.0 application has not yet called the
lineInitializeEx function, it can set the hLineApp parameter to NULL. TAPI 1.4 applications must
still call lineInitialize first.

dwDeviceID

The device identifier for the line device upon which the call is intended to be dialed, so variations
in dialing procedures on different lines can be applied to the translation process.

dwAPIVersion

Indicates the highest version of TAPI that the application supports (not necessarily the value that is
negotiated by lineNegotiateAPIVersion on some particular line device).

lpszAddressIn

Pointer to a null-terminated string that contains the address from which the information is to be
extracted for translation. This parameter must either use the canonical address format or an arbitrary
string of dialable digits (non-canonical). This parameter must not be NULL. If the AddressIn
contains a subaddress or name field, or additional addresses separated from the first address by CR
and LF characters, only the first address gets translated.

dwCard

The credit card to be used for dialing. This parameter proves valid only if the CARDOVERRIDE
bit is set in dwTranslateOptions. This parameter specifies the permanent identifier of a Card entry
in the [Cards] section in the registry (as obtained from lineTranslateCaps) that should be used
instead of the PreferredCardID that is specified in the definition of the CurrentLocation. It does not
cause the PreferredCardID parameter of the current Location entry in the registry to be modified;
the override applies only to the current translation operation. This parameter gets ignored if the
CARDOVERRIDE bit is not set in dwTranslateOptions.

dwTranslateOptions

The associated operations to be performed prior to the translation of the address into a dialable
string. This parameter uses one of the LINETRANSLATEOPTION_ Constants.

Note If you have set the LINETRANSLATEOPTION_CANCELCALLWAITING bit, also set the
LINECALLPARAMFLAGS_SECURE bit in the dwCallParamFlags member of the
LINECALLPARAMS structure (passed in to lineMakeCall through the lpCallParams
parameter). This action prevents the line device from using dialable digits to suppress call
interrupts.

lpTranslateOutput

A pointer to an application-allocated memory area to contain the output of the translation operation,
of type LINETRANSLATEOUTPUT. Prior to calling lineTranslateAddress, the application should
set the dwTotalSize member of this structure to indicate the amount of memory that is available to
TAPI for returning information.
5-53
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values
follow:

 • LINEERR_BADDEVICEID

 • LINEERR_INVALPOINTER

 • LINEERR_INCOMPATIBLEAPIVERSION

 • LINEERR_NODRIVER

 • LINEERR_INIFILECORRUPT

 • LINEERR_NOMEM

 • LINEERR_INVALADDRESS

 • LINEERR_OPERATIONFAILED

 • LINEERR_INVALAPPHANDLE

 • LINEERR_RESOURCEUNAVAIL

 • LINEERR_INVALCARD

 • LINEERR_STRUCTURETOOSMALL

 • LINEERR_INVALPARAM

lineTranslateDialog
The lineTranslateDialog function displays an application-modal dialog box that allows the user to
change the current location of a phone number that is about to be dialed, adjust location and calling card
parameters, and see the effect.

Function Details
LONG WINAPI lineTranslateDialog(
 HLINEAPP hLineApp,
 DWORD dwDeviceID,
 DWORD dwAPIVersion,
 HWND hwndOwner,
 LPCSTR lpszAddressIn
);

Parameters

hLineApp

The application handle that lineInitializeEx returns. If an application has not yet called the
lineInitializeEx function, it can set the hLineApp parameter to NULL.

dwDeviceID

The device identifier for the line device upon which the call is intended to be dialed, so variations
in dialing procedures on different lines can be applied to the translation process.

dwAPIVersion

Indicates the highest version of TAPI that the application supports (not necessarily the value that
lineNegotiateAPIVersion negotiates on the line device that dwDeviceID indicates).
5-54
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Functions
hwndOwner

A handle to a window to which the dialog box is to be attached. Can be a NULL value to indicate
that any window that is created during the function should have no owner window.

lpszAddressIn

A pointer to a null-terminated string that contains a phone number that is used, in the lower portion
of the dialog box, to show the effect of the user's changes on the location parameters. Ensure that
the number is in canonical format; if noncanonical, the phone number portion of the dialog box does
not display. You can leave this pointer NULL, in which case the phone number portion of the dialog
box does not display. If the lpszAddressIn parameter contains a subaddress or name field, or
additional addresses separated from the first address by CR and LF characters, only the first address
gets used in the dialog box.

Return Values

Returns zero if request succeeds or a negative number if an error occurs. Possible return values follow:

 • LINEERR_BADDEVICEID

 • LINEERR_INVALPARAM

 • LINEERR_INCOMPATIBLEAPIVERSION

 • LINEERR_INVALPOINTER

 • LINEERR_INIFILECORRUPT

 • LINEERR_NODRIVER

 • LINEERR_INUSE

 • LINEERR_NOMEM

 • LINEERR_INVALADDRESS

 • LINEERR_INVALAPPHANDLE

 • LINEERR_OPERATIONFAILED

lineUnhold
The lineUnhold function retrieves the specified held call.

Function Details

LONG lineUnhold(
 HCALL hCall
);

Parameters

hCall

The handle to the call to be retrieved. The application must be an owner of this call. The call state
of hCall must be onHold, onHoldPendingTransfer, or onHoldPendingConference.
5-55
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Messages
lineUnpark
The lineUnpark function retrieves the call that is parked at the specified address and returns a call handle
for it.

Function Details

LONG WINAPI lineUnpark(
HLINE hLine,
DWORD dwAddressID,
LPHCALL lphCall,
LPCSTR lpszDestAddress

);

Parameters

hLine

Handle to the open line device on which a call is to be unparked.

dwAddressID

Address on hLine at which the unpark is to be originated. An address identifier permanently
associates with an address; the identifier remains constant across operating system upgrades.

lphCall

Pointer to the location of type HCALL where the handle to the unparked call is returned. This handle
is unrelated to any other handle that previously may have been associated with the retrieved call,
such as the handle that might have been associated with the call when it was originally parked. The
application acts as the initial sole owner of this call.

lpszDestAddress

Pointer to a null-terminated character buffer that contains the address where the call is parked. The
address displays in standard dialable address format.

TAPI Line Messages
This section describes the line messages that the Cisco Unified TSP supports. These messages notify the
application of asynchronous events such as a new call arriving in the Cisco Unified Communications
Manager. The messages get sent to the application by the method that the application specifies in
lineInitializeEx

.
Table 5-2 TAPI Line Messages

TAPI Line Messages

LINE_ADDRESSSTATE

LINE_APPNEWCALL

LINE_CALLDEVSPECIFIC

LINE_CALLINFO

LINE_CALLSTATE
5-56
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Messages
LINE_ADDRESSSTATE
The LINE_ADDRESSSTATE message gets sent when the status of an address changes on a line that is
currently open by the application. The application can invoke lineGetAddressStatus to determine the
current status of the address.

Function Details
LINE_ADDRESSSTATE
dwDevice = (DWORD) hLine;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) idAddress;
dwParam2 = (DWORD) AddressState;
dwParam3 = (DWORD) 0;

Parameters

dwDevice

A handle to the line device.

dwCallbackInstance

The callback instance supplied when the line is opened.

dwParam1

The address identifier of the address that changed status.

dwParam2

The address state that changed. Can be a combination of these values:

LINEADDRESSSTATE_OTHER

Address-status items other than those that are in the following list changed. The application
should check the current address status to determine which items changed.

LINE_CLOSE

LINE_CREATE

LINE_DEVSPECIFIC

LINE_DEVSPECIFICFEATURE

LINE_GATHERDIGITS

LINE_GENERATE

LINE_LINEDEVSTATE

LINE_MONITORDIGITS

LINE_MONITORTONE

LINE_REMOVE

LINE_REPLY

LINE_REQUEST

Table 5-2 TAPI Line Messages (continued)

TAPI Line Messages
5-57
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Messages
LINEADDRESSSTATE_DEVSPECIFIC

The device-specific item of the address status changed.

LINEADDRESSSTATE_INUSEZERO

The address changed to idle (it is now in use by zero stations).

LINEADDRESSSTATE_INUSEONE

The address changed from idle or from being used by many bridged stations to being used by
just one station.

LINEADDRESSSTATE_INUSEMANY

The monitored or bridged address changed from being used by one station to being used by
more than one station.

LINEADDRESSSTATE_NUMCALLS

The number of calls on the address has changed. This change results from events such as a new
inbound call, an outbound call on the address, or a call changing its hold status.

LINEADDRESSSTATE_FORWARD

The forwarding status of the address changed, including the number of rings for determining a
no-answer condition. The application should check the address status to determine details about
the current forwarding status of the address.

LINEADDRESSSTATE_TERMINALS

The terminal settings for the address changed.

LINEADDRESSSTATE_CAPSCHANGE

Indicates that due to configuration changes that the user made, or other circumstances, one or
more of the members in the LINEADDRESSCAPS structure for the address changed. The
application should use lineGetAddressCaps to read the updated structure. Applications that
support API versions earlier than 1.4 receive a LINEDEVSTATE_REINIT message that
requires them to shut down and reinitialize their connection to TAPI to obtain the updated
information.

dwParam3 is not used.

LINE_APPNEWCALL
The LINE_APPNEWCALL message informs an application when a new call handle is spontaneously
created on its behalf (other than through an API call from the application, in which case the handle would
have been returned through a pointer parameter that passed into the function).

Function Details

LINE_APPNEWCALL
dwDevice = (DWORD) hLine;
dwCallbackInstance = (DWORD) dwInstanceData;
dwParam1 = (DWORD) dwAddressID;
dwParam2 = (DWORD) hCall;
dwParam3 = (DWORD) dwPrivilege;
5-58
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Messages
Parameters

dwDevice

The handle of the application to the line device on which the call was created.

dwCallbackInstance

The callback instance that is supplied when the line belonging to the call is opened.

dwParam1

Identifier of the address on the line on which the call appears.

dwParam2

The handle of the application to the new call.

dwParam3

The privilege of the application to the new call (LINECALLPRIVILEGE_OWNER or
LINECALLPRIVILEGE_MONITOR).

LINE_CALLDEVSPECIFIC
The TSPI LINE_CALLDEVSPECIFIC message is sent to notify TAPI about device-specific events that
occur on a call. The meaning of the message and the interpretation of the dwParam1 through dwParam3
parameters are device specific.

Function Details

LINE_CALLDEVSPECIFIC
htLine = (HTAPILINE) hLineDevice;
htCall = (HTAPICALL) hCallDevice;
dwMsg = (DWORD) LINE_CALLDEVSPECIFIC;
dwParam1 = (DWORD) DeviceData1;
dwParam2 = (DWORD) DeviceData2;
dwParam3 = (DWORD) DeviceData3;

Parameters

htLine

The TAPI opaque object handle to the line device.

htCall

The TAPI opaque object handle to the call device.

dwMsg

The value LINE_CALLDEVSPECIFIC.

dwParam1

Device specific
5-59
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Messages
dwParam2

Device specific

dwParam3

Device specific

LINE_CALLINFO
The TAPI LINE_CALLINFO message gets sent when the call information about the specified call has
changed. The application can invoke lineGetCallInfo to determine the current call information.

Function Details

LINE_CALLINFO
hDevice = (DWORD) hCall;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) CallInfoState;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) 0;

Parameters

hDevice

A handle to the call.

dwCallbackInstance

The callback instance that is supplied when the call's line is opened.

dwParam1

The call information item that changed. Can be one or more of the
LINECALLINFOSTATE_ constants.

dwParam2 is not used.

dwParam3 is not used.

LINE_CALLSTATE
The LINE_CALLSTATE message gets sent when the status of the specified call changes. Typically,
several such messages occur during the lifetime of a call. Applications get notified of new incoming calls
with this message; the new call exists in the offering state. The application can use the lineGetCallStatus
function to retrieve more detailed information about the current status of the call.

Function Details

LINE_CALLSTATE
dwDevice = (DWORD) hCall;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) CallState;
dwParam2 = (DWORD) CallStateDetail;
dwParam3 = (DWORD) CallPrivilege;
5-60
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Messages
Parameters

dwDevice

A handle to the call.

dwCallbackInstance

The callback instance that is supplied when the line that belongs to this call is opened.

dwParam1

The new call state. Cisco Unified TSP supports only the following LINECALLSTATE_ values:

LINECALLSTATE_IDLE

The call remains idle; no call actually exists.

LINECALLSTATE_OFFERING

The call gets offered to the station, which signals the arrival of a new call. In some
environments, a call in the offering state does not automatically alert the user. The switch that
instructs the line to ring does alerts; it does not affect any call states.

LINECALLSTATE_ACCEPTED

The system offered the call and it has been accepted. This indicates to other (monitoring)
applications that the current owner application claimed responsibility for answering the call. In
ISDN, this also indicates that alerting to both parties started.

LINECALLSTATE_CONFERENCED

The call is a member of a conference call and is logically in the connected state.

LINECALLSTATE_DIALTONE

The call receives a dial tone from the switch, which means that the switch is ready to receive a
dialed number.

LINECALLSTATE_DIALING

Destination address information (a phone number) is sent to the switch over the call. The
lineGenerateDigits does not place the line into the dialing state.

LINECALLSTATE_RINGBACK

The call receives ringback from the called address. Ringback indicates that the call has reached
the other station and is being alerted.

LINECALLSTATE_ONHOLDPENDCONF

The call currently remains on hold while it gets added to a conference.

LINECALLSTATE_CONNECTED

The call is established and the connection is made. Information can flow over the call between
the originating address and the destination address.

LINECALLSTATE_PROCEEDING

Dialing completes and the call proceeds through the switch or telephone network.

LINECALLSTATE_ONHOLD

The switch keeps the call on hold.

LINECALLSTATE_ONHOLDPENDTRANSFER

The call that is currently on hold awaits transfer to another number.

LINECALLSTATE_DISCONNECTED
5-61
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Messages
The remote party disconnected from the call.

LINECALLSTATE_UNKNOWN

The state of the call is not known. This state may occur due to limitations of the call-progress
detection implementation.

Cisco Unified TSP supports two new call states that indicate more information about the call
state within the Cisco Unified Communications Manager setup. The standard TAPI call state is
set to LINECALLSTATE_UNKNOWN and the following call states will be ORed with the
unknown call state.

#define CLDSMT_CALL_PROGRESSING_STATE 0x0100000

The Progressing state indicates that the call is in progress over the network. The application
must negotiate extension version 0x00050001 to receive this call state.

#define CLDSMT_CALL_WAITING_STATE 0x02000000

The waiting state indicates that the REFER request is in progress on Referrer's line and the
application should not request any other function on this call. All the requests will result in
LINEERR_INVALCALLSTATE. Application has to negotiate extension version 0x00070000 to
receive this call state.

#define CLDSMT_CALL_WHISPER_STATE 0x03000000

The whisper state indicates that the Intercom call is connected in one-way audio mode. The
Intercom originator cannot issue other function other that to drop the Intercom call. While at
destination side, the system allows only Talkback and dropping call. All other requests result in
LINEERR_OPERATIONUNAVAIL.

dwParam2

Call-state-dependent information.

 •If dwParam1 is LINECALLSTATE_CONNECTED, dwParam2 contains details about the
connected mode. This parameter uses the following LINECONNECTEDMODE_ constants:

 –LINECONNECTEDMODE_ACTIVE

Call connects at the current station (the current station acts as a participant in the call).

 –LINECONNECTEDMODE_INACTIVE

Call stays active at one or more other stations, but the current station does not participate in
the call.

When a call is disconnected with cause code = DISCONNECTMODE_TEMPFAILURE and the
lineState = LINEDEVSTATE_INSERVICE, applications must take care of dropping the call. If
the application terminates media for a device, then it is also takes the responsibility to stop the
RTP streams for the same call. Cisco Unified TSP will not provide Stop
Transmission/Reception events to applications in this scenario. The behavior is exactly the same
with IP phones. The user must hang up the disconnected - temp fail call on IP phone to stop the
media. The application is also responsible for stopping the RTP streams in case the line goes
out of service (LINEDEVSTATE_OUTOFSERVICE) and the call on a line is reported as IDLE.

Note If an application with negotiated extension version 0x00050001 or greater receives
device-specific CLDSMT_CALL_PROGRESSING_STATE = 0x01000000 with
LINECALLSTATE_UNKNOWN, the cause code is reported as the standard Q931 cause codes
in dwParam2.
5-62
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Messages
 •If dwParam1 specifies LINECALLSTATE_DIALTONE, dwParam2 contains the details about the
dial tone mode. This parameter uses the following LINEDIALTONEMODE_ constant:

LINEDIALTONEMODE_UNAVAIL

The dial tone mode is unavailable and cannot become known.

 •If dwParam1 specifies LINECALLSTATE_OFFERING, dwParam2 contains details about the
connected mode. This parameter uses the following LINEOFFERINGMODE_ constants:

LINEOFFERINGMODE_ACTIVE

The call alerts at the current station (accompanied by LINEDEVSTATE_RINGING
messages) and, if an application is set up to automatically answer, it answers. For TAPI
versions 1.4 and later, if the call state mode is ZERO, the application assumes that the value
is active (which represents the situation on a non-bridged address).

Note The Cisco Unified TSP does not send LINEDEVSTATE_RINGING messages until the call
is accepted and moves to the LINECALLSTATE_ACCEPTED state. IP_phones auto-accept
calls. CTI ports and CTI route points do not auto-accept calls. Call the lineAccept() function
to accept the call at these types of devices.

 •If dwParam1 specifies LINECALLSTATE_DISCONNECTED, dwParam2 contains details about
the disconnect mode. This parameter uses the following LINEDISCONNECTMODE_ constants:

LINEDISCONNECTMODE_NORMAL

This specifies a normal disconnect request by the remote party; call terminated normally.

LINEDISCONNECTMODE_UNKNOWN

The reason for the disconnect request remains unknown.

LINEDISCONNECTMODE_REJECT

The remote user rejected the call.

LINEDISCONNECTMODE_BUSY

The station that belongs to the remote user is busy.

LINEDISCONNECTMODE_NOANSWER

The station that belongs to the remote user does not answer.

LINEDISCONNECTMODE_CONGESTION

This message indicates that the network is congested.

LINEDISCONNECTMODE_UNAVAIL

The reason for the disconnect remains unavailable and cannot become known later.

LINEDISCONNECTMODE_FACCMC

Indicates that the FAC/CMC feature disconnected the call.

Note LINEDISCONNECTMODE_FACCMC is returned only if the extension version that is
negotiated on the line is 0x00050000 (6.0(1)) or higher. If the negotiated extension version is
not at least 0x00050000, TSP sets the disconnect mode to
LINEDISCONNECTMODE_UNAVAIL.
5-63
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Messages
dwParam3

If zero, this parameter indicates that no change in the privilege occurred for the call to this
application.

If nonzero, this parameter specifies the privilege for the application to the call. This occurs in the
following situations: (1) The first time that the application receives a handle to this call; (2) When
the application is the target of a call hand-off (even if the application already was an owner of the
call). This parameter uses the following LINECALLPRIVILEGE_ constants:

LINECALLPRIVILEGE_MONITOR

The application has monitor privilege.

LINECALLPRIVILEGE_OWNER

The application has owner privilege.

LINE_CLOSE
The LINE_CLOSE message gets sent when the specified line device has been forcibly closed. The line
device handle or any call handles for calls on the line no longer remains valid after this message is sent.

Function Details

LINE_CLOSE
dwDevice = (DWORD) hLine;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) 0;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) 0;

Parameters

dwDevice

A handle to the line device that was closed. This handle is no longer valid

dwCallbackInstance

The callback instance that is supplied when the line that belongs to this call is opened.

dwParam1 is not used.

dwParam2 is not used.

dwParam3 is not used.

LINE_CREATE
The LINE_CREATE message informs the application of the creation of a new line device.

Note CTI Manager cluster support, extension mobility, change notification, and user addition to the directory
can generate LINE_CREATE events.
5-64
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Messages
Function Details

LINE_CREATE
dwDevice = (DWORD) 0;
dwCallbackInstance = (DWORD) 0;
dwParam1 = (DWORD) idDevice;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) 0;

Parameters

dwDevice is not used.

dwCallbackInstance is not used.

dwParam1

The dwDeviceID of the newly created device.

dwParam2 is not used.

dwParam3 is not used.

LINE_DEVSPECIFIC
The LINE_DEVSPECIFIC message notifies the application about device-specific events that occur on
a line, address, or call. The meaning of the message and interpretation of the parameters are device
specific.

Function Details

LINE_DEVSPECIFIC
dwDevice = (DWORD) hLineOrCall;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) DeviceSpecific1;
dwParam2 = (DWORD) DeviceSpecific2;
dwParam3 = (DWORD) DeviceSpecific3;

Parameters

dwDevice

This device-specific parameter specifies a handle to either a line device or call.

dwCallbackInstance

The callback instance that is supplied when the line opens.

dwParam1 is device specific

dwParam2 is device specific

dwParam3 is device specific
5-65
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Messages
LINE_DEVSPECIFICFEATURE
This line message, added in Cisco Unified Communications Manager Release 6.0, enables a Do Not
Disturb (DND) change notification event. Cisco TSP notifies applications by using the
LINE_DEVSPECIFICFEATURE message about changes in the DND configuration or status. In order
to receive change notifications an application needs to enable
DEVSPECIFIC_DONOTDISTURB_CHANGED message flag by using lineDevSpecific
SLDST_SET_STATUS_MESSAGES request.

LINE_DEVSPECIFICFEATURE message is sent to notify the application about device-specific events
occurring on a line device. In case of a DND change notification, the message includes information about
the type of change that occurred on a device and resulted feature status or configured option.

Function Details

dwDevice = (DWORD) hLine;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) PHONEBUTTONFUNCTION_DONOTDISTURB;
dwParam2 = (DWORD) typeOfChange;
dwParam3 = (DWORD) currentValue;

enum CiscoDoNotDisturbOption {
 DoNotDisturbOption_NONE = 0,
 DoNotDisturbOption_RINGEROFF = 1,
 DoNotDisturbOption_REJECT = 2
};

enum CiscoDoNotDisturbStatus {
 DoNotDisturbStatus_UNKNOWN = 0,
 DoNotDisturbStatus_ENABLED = 1,
 DoNotDisturbStatus_DISABLED = 2
};

enum CiscoDoNotDisturbNotification {
 DoNotDisturb_STATUS_CHANGED = 1,
 DoNotDisturb_OPTION_CHANGED = 2
};

Parameters

dwDevice

A handle to a line device.

dwCallbackInstance

The callback instance supplied when opening the line.

dwParam1

Always equal to PHONEBUTTONFUNCTION_DONOTDISTURB for the Do-Not-Disturb change
notification

dwParam2

Indicates the type of change and can have one of the following enum values:

enum CiscoDoNotDisturbNotification {
 DoNotDisturb_STATUS_CHANGED = 1,
 DoNotDisturb_OPTION_CHANGED = 2
};
5-66
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Messages
dwParam3

If the dwParm2 indicates status change (is equal to DoNotDisturb_STATUS_CHANGED) this
parameter can have one of the following enum values:

enum CiscoDoNotDisturbStatus {
 DoNotDisturbStatus_UNKNOWN = 0,
 DoNotDisturbStatus_ENABLED = 1,
 DoNotDisturbStatus_DISABLED = 2
};

If the dwParm2 indicates option change (is equal to DoNotDisturb_OPTION_CHANGED) this
parameter can have one of the following enum values:

enum CiscoDoNotDisturbOption {
 DoNotDisturbOption_NONE = 0,
 DoNotDisturbOption_RINGEROFF = 1,
 DoNotDisturbOption_REJECT = 2
};

LINE_GATHERDIGITS
The TAPI LINE_GATHERDIGITS message is sent when the current buffered digit-gathering request is
terminated or canceled. You can examine the digit buffer after the application receives this message.

Function Details

LINE_GATHERDIGITS
hDevice = (DWORD) hCall;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) GatherTermination;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) 0;

Parameters

hDevice

A handle to the call.

dwCallbackInstance

The callback instance that is supplied when the line opens.

dwParam1

The reason why digit gathering terminated. This parameter must be one and only one of the
LINEGATHERTERM_ constants.

dwParam2

Unused.

dwParam3

The tick count (number of milliseconds since Windows started) at which the digit gathering
completes. For TAPI versions earlier than 2.0, this parameter is not used.
5-67
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Messages
LINE_GENERATE
The TAPI LINE_GENERATE message notifies the application that the current digit or tone generation
terminated. Only one such generation request can be in progress an a given call at any time. This message
also gets sent when digit or tone generation is canceled.

Function Details

LINE_GENERATE
hDevice = (DWORD) hCall;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) GenerateTermination;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) 0;

Parameters

hDevice

A handle to the call.

dwCallbackInstance

The callback instance that is supplied when the line opens.

dwParam1

The reason that digit or tone generation terminates. This parameter must be the only one of the
LINEGENERATETERM_ constants.

dwParam2 is not used.

dwParam3

The tick count (number of milliseconds since Windows started) at which the digit or tone generation
completes. For API versions earlier than 2.0, this parameter is not used.

LINE_LINEDEVSTATE
The TAPI LINE_LINEDEVSTATE message gets sent when the state of a line device changes. The
application can invoke lineGetLineDevStatus to determine the new status of the line.

Function Details

LINE_LINEDEVSTATE
hDevice = (DWORD) hLine;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) DeviceState;
dwParam2 = (DWORD) DeviceStateDetail1;
dwParam3 = (DWORD) DeviceStateDetail2;
5-68
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Messages
Parameters

hDevice

A handle to the line device. This parameter is NULL when dwParam1 is LINEDEVSTATE_REINIT.

dwCallbackInstance

The callback instance that is supplied when the line is opened. If the dwParam1 parameter is
LINEDEVSTATE_REINIT, the dwCallbackInstance parameter is not valid and is set to zero.

dwParam1

The line device status item that changed. The parameter can be one or more of the
LINEDEVSTATE_ constants.

dwParam2

The interpretation of this parameter depends on the value of dwParam1. If dwParam1 is
LINEDEVSTATE_RINGING, dwParam2 contains the ring mode with which the switch instructs the
line to ring. Valid ring modes include numbers in the range one to dwNumRingModes, where
dwNumRingModes specifies a line device capability.

If dwParam1 is LINEDEVSTATE_REINIT, and TAPI issued the message as a result of translation
of a new API message into a REINIT message, dwParam2 contains the dwMsg parameter of the
original message (for example, LINE_CREATE or LINE_LINEDEVSTATE). If dwParam2 is zero,
this indicates that the REINIT message represents a real REINIT message that requires the
application to call lineShutdown at its earliest convenience.

dwParam3

The interpretation of this parameter depends on the value of dwParam1. If dwParam1 is
LINEDEVSTATE_RINGING, dwParam3 contains the ring count for this ring event. The ring count
starts at zero.

If dwParam1 is LINEDEVSTATE_REINIT, and TAPI issued the message as a result of translation
of a new API message into a REINIT message, dwParam3 contains the dwParam1 parameter of the
original message (for example, LINEDEVSTATE_TRANSLATECHANGE or some other
LINEDEVSTATE_ value, if dwParam2 is LINE_LINEDEVSTATE, or the new device identifier, if
dwParam2 is LINE_CREATE).

LINE_MONITORDIGITS
The LINE_MONITORDIGITS message gets sent when a digit is detected. The lineMonitorDigits
function controls the sending of this message.

Function Details

LINE_MONITORDIGITS
dwDevice = (DWORD) hCall;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) Digit;
dwParam2 = (DWORD) DigitMode;
dwParam3 = (DWORD) 0;

Parameters

dwDevice
5-69
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Messages
A handle to the call.

dwCallbackInstance

The callback instance that is supplied when the line for this call is opened.

dwParam1

The low-order byte contains the last digit that is received in ASCII.

dwParam2

The digit mode that was detected. This parameter must be one and only one of the following
LINEDIGITMODE_ constant:

 – LINEDIGITMODE_DTMF - Detect digits as DTMF tones. Valid digits for DTMF include ‘0’
through ‘9’, ‘*’, and ‘#’.

dwParam3

The “tick count” (number of milliseconds after Windows started) at which the specified digit was
detected. For API versions earlier than 2.0, this parameter is not used.

LINE_MONITORTONE
The LINE_MONITORTONE message gets sent when a tone is detected. The lineMonitorTones function
controls the sending of this message.

Note Cisco Unified TSP supports only silent detection through LINE_MONITORTONE.

Function Details
LINE_MONITORTONE
dwDevice = (DWORD) hCall;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) dwAppSpecific;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) tick count;

Parameters

dwDevice

A handle to the call.

dwCallbackInstance

The callback instance supplied when the line opens for this call.

dwParam1

The application-specific dwAppSpecific member of the LINE_MONITORTONE structure for the
tone that was detected.

dwParam2 is not used.

dwParam3

The “tick count” (number of milliseconds after Windows started) at which the specified digit was
detected.
5-70
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Messages
LINE_REMOVE
The LINE_REMOVE message informs an application of the removal (deletion from the system) of a line
device. Generally, this parameter is not used for temporary removals, such as extraction of PCMCIA
devices, but only for permanent removals in which, the service provider would no longer report the
device, if TAPI were reinitialized.

Note CTI Manager cluster support, extension mobility, change notification, and user deletion from the
directory can generate LINE_REMOVE events.

Function Details
LINE_REMOVE
dwDevice = (DWORD) 0;
dwCallbackInstance = (DWORD) 0;
dwParam1 = (DWORD) dwDeviceID;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) 0;

Parameters

dwDevice is reserved. Set to zero.

dwCallbackInstance is reserved. Set to zero.

dwParam1

Identifier of the line device that was removed.

dwParam2 is reserved. Set to zero.

dwParam3 is reserved. Set to zero.

LINE_REPLY
The LINE_REPLY message reports the results of function calls that completed asynchronously.

Function Details
LINE_REPLY
dwDevice = (DWORD) 0;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) idRequest;
dwParam2 = (DWORD) Status;
dwParam3 = (DWORD) 0;

Parameters

dwDevice is not used.

dwCallbackInstance

Returns the callback instance for this application.

dwParam1
5-71
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
The request identifier for which this is the reply.

dwParam2

The success or error indication. The application should cast this parameter into a long integer:

 – Zero indicates success.

 – A negative number indicates an error.

dwParam3 is not used.

LINE_REQUEST
The TAPI LINE_REQUEST message reports the arrival of a new request from another application.

Function Details

LINE_REQUEST
hDevice = (DWORD) 0;
dwCallbackInstance = (DWORD) hRegistration;
dwParam1 = (DWORD) RequestMode;
dwParam2 = (DWORD) RequestModeDetail1;
dwParam3 = (DWORD) RequestModeDetail2;

Parameters

hDevice is not used.

dwCallbackInstance

The registration instance of the application that is specified on lineRegisterRequestRecipient.

dwParam1

The request mode of the newly pending request. This parameter uses the LINEREQUESTMODE_
constants.

dwParam2

If dwParam1 is set to LINEREQUESTMODE_DROP, dwParam2 contains the hWnd of the
application that requests the drop. Otherwise, dwParam2 is not used.

dwParam3

If dwParam1 is set to LINEREQUESTMODE_DROP, the low-order word of dwParam3 contains
the wRequestID as specified by the application requesting the drop. Otherwise, dwParam3 is not
used.

TAPI Line Device Structures
Table 5-3 lists the TAPI line device structures that the Cisco Unified TSP supports. This section lists the
possible values for the structure members as set by the TSP, and provides a cross reference to the
functions that use them. If the value of a structure member is device, line, or call specific, the system
notes the value for each condition.
5-72
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
LINEADDRESSCAPS

Table 5-3 TAPI Line Device Structures

TAPI Line Device Structures

LINEADDRESSCAPS

LINEADDRESSSTATUS

LINEAPPINFO

LINECALLINFO

LINECALLLIST

LINECALLPARAMS

LINECALLSTATUS

LINECARDENTRY

LINECOUNTRYENTRY

LINECOUNTRYLIST

LINEDEVCAPS

LINEDEVSTATUS

LINEEXTENSIONID

LINEFORWARD

LINEFORWARDLIST

LINEGENERATETONE

LINEINITIALIZEEXPARAMS

LINELOCATIONENTRY

LINEMESSAGE

LINEMONITORTONE

LINEPROVIDERENTRY

LINEPROVIDERLIST

LINEREQMAKECALL

LINETRANSLATECAPS

LINETRANSLATEOUTPUT

Members Values

dwLineDeviceID For All Devices:
The device identifier of the line device with which this address
is associated.

dwAddressSize
dwAddressOffset

For All Devices:
The size, in bytes, of the variably sized address field and the
offset, in bytes, from the beginning of this data structure

dwDevSpecificSize
dwDevSpecificOffset

For All Devices:
0

5-73
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
dwAddressSharing For All Devices:
0

dwAddressStates For All Devices (except Park DNs):
LINEADDRESSSTATE_FORWARD

For Park DNs:
0

dwCallInfoStates For All Devices (except Park DNs):
LINECALLINFOSTATE_CALLEDID
LINECALLINFOSTATE_CALLERID
LINECALLINFOSTATE_CALLID
LINECALLINFOSTATE_CONNECTEDID
LINECALLINFOSTATE_MEDIAMODE
LINECALLINFOSTATE_MONITORMODES
LINECALLINFOSTATE_NUMMONITORS
LINECALLINFOSTATE_NUMOWNERDECR
LINECALLINFOSTATE_NUMOWNERINCR
LINECALLINFOSTATE_ORIGIN
LINECALLINFOSTATE_REASON
LINECALLINFOSTATE_REDIRECTINGID
LINECALLINFOSTATE_REDIRECTIONID

For Park DNs:
LINECALLINFOSTATE_CALLEDID
LINECALLINFOSTATE_CALLERID
LINECALLINFOSTATE_CALLID
LINECALLINFOSTATE_CONNECTEDID
LINECALLINFOSTATE_NUMMONITORS
LINECALLINFOSTATE_NUMOWNERDECR
LINECALLINFOSTATE_NUMOWNERINCR
LINECALLINFOSTATE_ORIGIN
LINECALLINFOSTATE_REASON
LINECALLINFOSTATE_REDIRECTINGID
LINECALLINFOSTATE_REDIRECTIONID

dwCallerIDFlags For All Devices:
LINECALLPARTYID_ADDRESS
LINECALLPARTYID_NAME
LINECALLPARTYID_UNKNOWN
LINECALLPARTYID_BLOCKED

dwCalledIDFlags For All Devices:
LINECALLPARTYID_ADDRESS
LINECALLPARTYID_NAME
LINECALLPARTYID_UNKNOWN

dwConnectedIDFlags For All Devices:
LINECALLPARTYID_ADDRESS
LINECALLPARTYID_NAME
LINECALLPARTYID_UNKNOWN
LINECALLPARTYID_BLOCKED

Members Values
5-74
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
dwRedirectionIDFlags For All Devices:
LINECALLPARTYID_ADDRESS
LINECALLPARTYID_NAME
LINECALLPARTYID_UNKNOWN
LINECALLPARTYID_BLOCKED

dwRedirectingIDFlags For All Devices:
LINECALLPARTYID_ADDRESS
LINECALLPARTYID_NAME
LINECALLPARTYID_UNKNOWN

dwCallStates For IP Phones and CTI Ports:
LINECALLSTATE_ACCEPTED
LINECALLSTATE_CONFERENCED
LINECALLSTATE_CONNECTED
LINECALLSTATE_DIALING
LINECALLSTATE_DIALTONE
LINECALLSTATE_DISCONNECTED
LINECALLSTATE_IDLE
LINECALLSTATE_OFFERING
LINECALLSTATE_ONHOLD
LINECALLSTATE_ONHOLDPENDCONF
LINECALLSTATE_ONHOLDPENDTRANSFER
LINECALLSTATE_PROCEEDING
LINECALLSTATE_RINGBACK
LINECALLSTATE_UNKNOWN

For CTI Route Points (without media):
LINECALLSTATE_ACCEPTED
LINECALLSTATE_DISCONNECTED
LINECALLSTATE_IDLE
LINECALLSTATE_OFFERING
LINECALLSTATE_UNKNOWN
For CTI Route Points (with media):
LINECALLSTATE_ACCEPTED
LINECALLSTATE_CONNECTED
LINECALLSTATE_DISCONNECTED
LINECALLSTATE_ONHOLD
LINECALLSTATE_IDLE
LINECALLSTATE_OFFERING
LINECALLSTATE_UNKNOWN

For Park DNs:
LINECALLSTATE_ACCEPTED
LINECALLSTATE_CONFERENCED
LINECALLSTATE_CONNECTED
LINECALLSTATE_DISCONNECTED
LINECALLSTATE_IDLE
LINECALLSTATE_OFFERING
LINECALLSTATE_ONHOLD
LINECALLSTATE_UNKNOWN

Members Values
5-75
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
dwDialToneModes For IP Phones and CTI Ports:
LINEDIALTONEMODE_UNAVAIL

For CTI Route Points and Park DNs:
0

dwBusyModes For All Devices:
0

dwSpecialInfo For All Devices:
0

dwDisconnectModes For All Devices:
LINEDISCONNECTMODE_BADDADDRESS
LINEDISCONNECTMODE_BUSY
LINEDISCONNECTMODE_CONGESTION
LINEDISCONNECTMODE_FORWARDED
LINEDISCONNECTMODE_NOANSWER
LINEDISCONNECTMODE_NORMAL
LINEDISCONNECTMODE_REJECT
LINEDISCONNECTMODE_TEMPFAILURE
LINEDISCONNECTMODE_UNREACHABLE
LINEDISCONNECTMODE_FACCMC (if negotiated
extension version is 0x00050000 or greater)

dwMaxNumActiveCalls For IP Phones, CTI Ports, and Park DNs:
1

For CTI Route Points (without media):
0

For CTI Route Points (with media):
Cisco Unified Communications Manager Administration
configuration

dwMaxNumOnHoldCalls For IP Phones, CTI Ports:
200

For CTI Route Points:
0

For CTI Route Points (with media):
Cisco Unified Communications Manager Administration
configuration (same configuration as dwMaxNumActiveCalls)

For Park DNs:

1

dwMaxNumOnHoldPendingCalls For IP Phones and CTI Ports:
1

For CTI Route Points and Park DNs:
0

dwMaxNumConference For IP Phones, CTI Ports, and Park DNs:
16

For CTI Route Points:
0

Members Values
5-76
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
dwMaxNumTransConf For All Devices:
0

dwAddrCapFlags For IP Phones:
LINEADDRCAPFLAGS_CONFERENCEHELD
LINEADDRCAPFLAGS_DIALED
LINEADDRCAPFLAGS_FWDSTATUSVALID
LINEADDRCAPFLAGS_PARTIALDIAL
LINEADDRCAPFLAGS_TRANSFERHELD

For CTI Ports:
LINEADDRCAPFLAGS_CONFERENCEHELD
LINEADDRCAPFLAGS_DIALED
LINEADDRCAPFLAGS_ACCEPTTOALERT
LINEADDRCAPFLAGS_FWDSTATUSVALID
LINEADDRCAPFLAGS_PARTIALDIAL
LINEADDRCAPFLAGS_TRANSFERHELD

For CTI Route Points:
LINEADDRCAPFLAGS_ACCEPTTOALERT
LINEADDRCAPFLAGS_FWDSTATUSVALID
LINEADDRCAPFLAGS_ROUTEPOINT

For Park DNs:
LINEADDRCAPFLAGS_NOEXTERNALCALLS
LINEADDRCAPFLAGS_NOINTERNALCALLS

Members Values
5-77
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
dwCallFeatures For IP Phones (except VG248 and ATA186) and CTI Ports:
LINECALLFEATURE_ACCEPT
LINECALLFEATURE_ADDTOCONF
LINECALLFEATURE_ANSWER
LINECALLFEATURE_BLINDTRANSFER
LINECALLFEATURE_COMPLETETRANSF
LINECALLFEATURE_DIAL
LINECALLFEATURE_DROP
LINECALLFEATURE_GATHERDIGITS
LINECALLFEATURE_GENERATEDIGITS
LINECALLFEATURE_GENERATETONE
LINECALLFEATURE_HOLD
LINECALLFEATURE_MONITORDIGITS
LINECALLFEATURE_MONITORTONES
LINECALLFEATURE_PARK
LINECALLFEATURE_PREPAREADDTOCONF
LINECALLFEATURE_REDIRECT
LINECALLFEATURE_SETUPCONF
LINECALLFEATURE_SETUPTRANSFER
LINECALLFEATURE_UNHOLD
LINECALLFEATURE_UNPARK

For VG248 and ATA186 Devices:
LINECALLFEATURE_ACCEPT
LINECALLFEATURE_ADDTOCONF
LINECALLFEATURE_BLINDTRANSFER
LINECALLFEATURE_COMPLETETRANSF
LINECALLFEATURE_DIAL
LINECALLFEATURE_DROP
LINECALLFEATURE_GATHERDIGITS
LINECALLFEATURE_GENERATEDIGITS
LINECALLFEATURE_GENERATETONE
LINECALLFEATURE_HOLD
LINECALLFEATURE_MONITORDIGITS
LINECALLFEATURE_MONITORTONES
LINECALLFEATURE_PARK
LINECALLFEATURE_PREPAREADDTOCONF
LINECALLFEATURE_REDIRECT
LINECALLFEATURE_SETUPCONF
LINECALLFEATURE_SETUPTRANSFER
LINECALLFEATURE_UNHOLD
LINECALLFEATURE_UNPARK

Members Values
5-78
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
dwCallFeatures (continued) For CTI Route Points (without media):
LINECALLFEATURE_ACCEPT
LINECALLFEATURE_DROP
LINECALLFEATURE_REDIRECT

For CTI Route Points (with media):
LINECALLFEATURE_ACCEPT
LINECALLFEATURE_ANSWER
LINECALLFEATURE_DIAL
LINECALLFEATURE_DROP
LINECALLFEATURE_GATHERDIGITS
LINECALLFEATURE_GENERATEDIGITS
LINECALLFEATURE_GENERATETONE
LINECALLFEATURE_HOLD
LINECALLFEATURE_MONITORDIGITS
LINECALLFEATURE_MONITORTONES
LINECALLFEATURE_REDIRECT
LINECALLFEATURE_UNHOLD

For Park DNs:
0

dwRemoveFromConfCaps For All Devices:
0

dwRemoveFromConfState For All Devices:
0

dwTransferModes For IP Phones and CTI Ports:
LINETRANSFERMODE_TRANSFER
LINETRANSFERMODE_CONFERENCE

For CTI Route Points and Park DNs:
0

dwParkModes For IP Phones and CTI Ports:
LINEPARKMODE_NONDIRECTED

For CTI Route Points and Park DNs:
0

dwForwardModes For All Devices (except ParkDNs):
LINEFORWARDMODE_UNCOND

For Park DNs:
0

dwMaxForwardEntries For All Devices (except ParkDNs):
1

For Park DNs:
0

dwMaxSpecificEntries For All Devices:
0

dwMinFwdNumRings For All Devices:
0

Members Values
5-79
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
dwMaxFwdNumRings For All Devices:
0

dwMaxCallCompletions For All Devices:
0

dwCallCompletionConds For All Devices:
0

dwCallCompletionModes For All Devices:
0

dwNumCompletionMessages For All Devices:
0

dwCompletionMsgTextEntrySize For All Devices:
0

dwCompletionMsgTextSize
dwCompletionMsgTextOffset

For All Devices:
0

dwAddressFeatures For IP Phones and CTI Ports:
LINEADDRFEATURE_FORWARD
LINEADDRFEATURE_FORWARDFWD
LINEADDRFEATURE_MAKECALL

For CTI Route Points:
LINEADDRFEATURE_FORWARD
LINEADDRFEATURE_FORWARDFWD

For Park DNs:
0

dwPredictiveAutoTransferStates For All Devices:
0

dwNumCallTreatments For All Devices:
0

dwCallTreatmentListSize
dwCallTreatmentListOffset

For All Devices:
0

dwDeviceClassesSize
dwDeviceClassesOffset

For All Devices (except Park DNs):
"tapi/line"
"tapi/phone"
"wave/in"
"wave/out"

For Park DNs:
"tapi/line"

dwMaxCallDataSize For All Devices:
0

dwCallFeatures2 For IP Phones and CTI Ports:
LINECALLFEATURE2_TRANSFERNORM
LINECALLFEATURE2_TRANSFERCONF

For CTI Route Points and Park DNs:
0

Members Values
5-80
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
LINEADDRESSSTATUS

dwMaxNoAnswerTimeout For IP Phones and CTI Ports:
4294967295 (0xFFFFFFFF)

For CTI Route Points and Park DNs:
0

dwConnectedModes For IP Phones, CTI Ports
LINECONNECTEDMODE_ACTIVE
LINECONNECTEDMODE_INACTIVE

For Park DNs:
LINECONNECTEDMODE_ACTIVE

For CTI Route Points (without media):
0

For CTI Route Points (with media)
LINECONNECTEDMODE_ACTIVE

dwOfferingModes For All Devices:
LINEOFFERINGMODE_ACTIVE

dwAvailableMediaModes For All Devices:
0

Members Values

dwNumInUse For All Devices:
1

dwNumActiveCalls For All Devices:
The number of calls on the address that are in call states other
than idle, onhold, onholdpendingtransfer, and
onholdpendingconference.

dwNumOnHoldCalls For All Devices:
The number of calls on the address in the onhold state.

dwNumOnHoldPendCalls For All Devices:
The number of calls on the address in the
onholdpendingtransfer or the onholdpendingconference state.

dwAddressFeatures For IP Phones and CTI Ports:
LINEADDRFEATURE_FORWARD
LINEADDRFEATURE_FORWARDFWD
LINEADDRFEATURE_MAKECALL

For CTI Route Points:
LINEADDRFEATURE_FORWARD
LINEADDRFEATURE_FORWARDFWD

For Park DNs:
0

dwNumRingsNoAnswer For All Devices:
0

Members Values
5-81
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
LINEAPPINFO
The LINEAPPINFO structure contains information about the application that is currently running. The
LINEDEVSTATUS structure can contain an array of LINEAPPINFO structures.

Structure Details

typedef struct lineappinfo_tag {
 DWORD dwMachineNameSize;
 DWORD dwMachineNameOffset;
 DWORD dwUserNameSize;
 DWORD dwUserNameOffset;
 DWORD dwModuleFilenameSize;
 DWORD dwModuleFilenameOffset;
 DWORD dwFriendlyNameSize;
 DWORD dwFriendlyNameOffset;
 DWORD dwMediaModes;
 DWORD dwAddressID;
} LINEAPPINFO, *LPLINEAPPINFO;

dwForwardNumEntries For All Devices (except Park DNs):
The number of entries in the array to which dwForwardSize and
dwForwardOffset refer.

For Park DNs:
0

dwForwardSize
dwForwardOffset

For All Devices (except Park DNs):
The size, in bytes, and the offset, in bytes, from the beginning
of this data structure of the variably sized field that describes
the address forwarding information. This information appears
as an array of dwForwardNumEntries elements, of type
LINEFORWARD. Consider the offsets of the addresses in the
array relative to the beginning of the LINEADDRESSSTATUS
structure. The offsets dwCallerAddressOffset and
dwDestAddressOffset in the variably sized field of type
LINEFORWARD to which dwForwardSize and
dwForwardOffset point are relative to the beginning of the
LINEADDRESSSTATUS data structure (the root container).

For Park DNs:
0

dwTerminalModesSize
dwTerminalModesOffset

For All Devices:
0

dwDevSpecificSize
dwDevSpecificOffset

For All Devices:
0

Members Values
5-82
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
LINECALLINFO

Members Values

dwMachineNameSize
dwMachineNameOffset

Size (bytes) and offset from beginning of LINEDEVSTATUS
of a string that specifies the name of the computer on which the
application is executing.

dwUserNameSize
dwUserNameOffset

Size (bytes) and offset from beginning of LINEDEVSTATUS
of a string that specifies the user name under whose account the
application is running.

dwModuleFilenameSize
dwModuleFilenameOffset

Size (bytes) and offset from beginning of LINEDEVSTATUS
of a string that specifies the module filename of the application.
You can use this string in a call to lineHandoff to perform a
directed handoff to the application.

dwFriendlyNameSize
dwFriendlyNameOffset

Size (bytes) and offset from beginning of LINEDEVSTATUS
of the string that the application provides to lineInitialize or
lineInitializeEx, which should be used in any display of
applications to the user.

dwMediaModes The media types for which the application has requested
ownership of new calls; zero if the line dwPrivileges did not
include LINECALLPRIVILEGE_OWNER when it opened.

dwAddressID If the line handle that was opened by using
LINEOPENOPTION_SINGLEADDRESS contains the address
identifier that is specified, set to 0xFFFFFFFF if the single
address option was not used.

An address identifier permanently associates with an address;
the identifier remains constant across operating system
upgrades.

Members Values

hLine For All Devices:
The handle for the line device with which this call is associated.

dwLineDeviceID For All Devices:
The device identifier of the line device with which this call is
associated.

dwAddressID For All Devices:
0

dwBearerMode For All Devices:
LINEBEARERMODE_SPEECH
LINEBEARERMODE_VOICE

dwRate For All Devices:
0

5-83
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
dwMediaMode For IP Phones and Park DNs:
LINEMEDIAMODE_INTERACTIVEVOICE

For CTI Ports and CTI Route Points:
LINEMEDIAMODE_AUTOMATEDVOICE
LINEMEDIAMODE_INTERACTIVEVOICE

dwAppSpecific For All Devices:
Not interpreted by the API implementation and service
provider. Any owner application of this call can set it with the
lineSetAppSpecific function.

dwCallID For All Devices:
In some telephony environments, the switch or service provider
can assign a unique identifier to each call. This allows the call
to be tracked across transfers, forwards, or other events. The
domain of these call IDs and their scope is service
provider-defined. The dwCallID member makes this unique
identifier available to the applications. The Cisco Unified TSP
uses dwCallID to store the “GlobalCallID” of the call. The
“GlobalCallID” represents a unique identifier that allows
applications to identify all call handles that are related to a call.

dwRelatedCallID For All Devices:
0

dwCallParamFlags For All Devices:
0

dwCallStates For IP Phones and CTI Ports:
LINECALLSTATE_ACCEPTED
LINECALLSTATE_CONFERENCED
LINECALLSTATE_CONNECTED
LINECALLSTATE_DIALING
LINECALLSTATE_DIALTONE
LINECALLSTATE_DISCONNECTED
LINECALLSTATE_IDLE
LINECALLSTATE_OFFERING
LINECALLSTATE_ONHOLD
LINECALLSTATE_ONHOLDPENDCONF
LINECALLSTATE_ONHOLDPENDTRANSFER
LINECALLSTATE_PROCEEDING
LINECALLSTATE_RINGBACK
LINECALLSTATE_UNKNOWN

Members Values
5-84
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
dwCallStates (continued) For CTI Route Points (without media):
LINECALLSTATE_ACCEPTED
LINECALLSTATE_DISCONNECTED
LINECALLSTATE_IDLE
LINECALLSTATE_OFFERING
LINECALLSTATE_UNKNOWN

For CTI Route Points (with media):
LINECALLSTATE_ACCEPTED
LINECALLSTATE_BUSY
LINECALLSTATE_CONNECTED
LINECALLSTATE_DIALING
LINECALLSTATE_DIALTONE
LINECALLSTATE_DISCONNECTED
LINECALLSTATE_IDLE
LINECALLSTATE_OFFERING
LINECALLSTATE_ONHOLD
LINECALLSTATE_PROCEEDING
LINECALLSTATE_RINGBACK
LINECALLSTATE_UNKNOWN

For Park DNs:
LINECALLSTATE_ACCEPTED
LINECALLSTATE_CONFERENCED
LINECALLSTATE_CONNECTED
LINECALLSTATE_DISCONNECTED
LINECALLSTATE_IDLE
LINECALLSTATE_OFFERING
LINECALLSTATE_ONHOLD
LINECALLSTATE_UNKNOWN

dwMonitorDigitModes For IP Phones, CTI Ports, and CTI Route Points (with media):
LINEDIGITMODE_DTMF

For CTI Route Points and Park DNs:
0

dwMonitorMediaModes For IP Phones and Park DNs:
LINEMEDIAMODE_INTERACTIVEVOICE

For CTI Ports and CTI Route Points:
LINEMEDIAMODE_AUTOMATEDVOICE
LINEMEDIAMODE_INTERACTIVEVOICE

DialParams For All Devices:
0

dwOrigin For All Devices:
LINECALLORIGIN_CONFERENCE
LINECALLORIGIN_EXTERNAL
LINECALLORIGIN_INTERNAL
LINECALLORIGIN_OUTBOUND
LINECALLORIGIN_UNAVAIL
LINECALLORIGIN_UNKNOWN

Members Values
5-85
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
dwReason For All Devices:
LINECALLREASON_DIRECT
LINECALLREASON_FWDBUSY
LINECALLREASON_FWDNOANSWER
LINECALLREASON_FWDUNCOND
LINECALLREASON_PARKED
LINECALLREASON_PICKUP
LINECALLREASON_REDIRECT
LINECALLREASON_REMINDER
LINECALLREASON_TRANSFER
LINECALLREASON_UNKNOWN
LINECALLREASON_UNPARK

dwCompletionID For All Devices:
0

dwNumOwners For All Devices:
The number of application modules with different call handles
with owner privilege for the call.

dwNumMonitors For All Devices:
The number of application modules with different call handles
with monitor privilege for the call.

dwCountryCode For All Devices:
0

dwTrunk For All Devices:
0xFFFFFFFF

dwCallerIDFlags For All Devices:
LINECALLPARTYID_ADDRESS
LINECALLPARTYID_NAME
LINECALLPARTYID_UNKNOWN
LINECALLPARTYID_BLOCKED

dwCallerIDSize
dwCallerIDOffset

For All Devices:
The size, in bytes, of the variably sized field that contains the
caller party ID number information and the offset, in bytes,
from the beginning of this data structure.

dwCallerIDNameSize
dwCallerIDNameOffset

For All Devices:
The size, in bytes, of the variably sized field that contains the
caller party ID name information and the offset, in bytes, from
the beginning of this data structure.

dwCalledIDFlags For All Devices:
LINECALLPARTYID_ADDRESS
LINECALLPARTYID_NAME
LINECALLPARTYID_UNKNOWN

dwCalledIDSize
dwCalledIDOffset

For All Devices:
The size, in bytes, of the variably sized field that contains the
called-party ID number information and the offset, in bytes,
from the beginning of this data structure.

Members Values
5-86
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
dwCalledIDNameSize
dwCalledIDNameOffset

For All Devices:
The size, in bytes, of the variably sized field that contains the
called-party ID name information and the offset, in bytes, from
the beginning of this data structure.

dwConnectedIDFlags For All Devices:
LINECALLPARTYID_ADDRESS
LINECALLPARTYID_NAME
LINECALLPARTYID_UNKNOWN
LINECALLPARTYID_BLOCKED

dwConnectedIDSize
dwConnectedIDOffset

For All Devices:
The size, in bytes, of the variably sized field that contains the
connected party identifier number information and the offset, in
bytes, from the beginning of this data structure.

dwConnectedIDNameSize
dwConnectedIDNameOffset

For All Devices:
The size, in bytes, of the variably sized field that contains the
connected party identifier name information and the offset, in
bytes, from the beginning of this data structure.

dwRedirectionIDFlags For All Devices:
LINECALLPARTYID_ADDRESS
LINECALLPARTYID_NAME
LINECALLPARTYID_UNKNOWN
LINECALLPARTYID_BLOCKED

dwRedirectionIDSize
dwRedirectionIDOffset

For All Devices:
The size, in bytes, of the variably sized field that contains the
redirection party identifier number information and the offset,
in bytes, from the beginning of this data structure.

dwRedirectionIDNameSize
dwRedirectionIDNameOffset

For All Devices:
The size, in bytes, of the variably sized field that contains the
redirection party identifier name information and the offset, in
bytes, from the beginning of this data structure.

dwRedirectingIDFlags For All Devices:
LINECALLPARTYID_ADDRESS
LINECALLPARTYID_NAME
LINECALLPARTYID_UNKNOWN

dwRedirectingIDSize
dwRedirectingIDOffset

For All Devices:
The size, in bytes, of the variably sized field that contains the
redirecting party identifier number information and the offset,
in bytes, from the beginning of this data structure.

dwRedirectingIDNameSize
dwRedirectingIDNameOffset

For All Devices:
The size, in bytes, of the variably sized field that contains the
redirecting party identifier name information and the offset, in
bytes, from the beginning of this data structure.

Members Values
5-87
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
dwAppNameSize
dwAppNameOffset

For All Devices:
The size, in bytes, and the offset, in bytes, from the beginning
of this data structure of the variably sized field that holds the
user-friendly application name of the application that first
originated, accepted, or answered the call. This specifies the
name that an application can specify in lineInitializeEx. If the
application specifies no such name, the application module
filename gets used instead.

dwDisplayableAddressSize
dwDisplayableAddressOffset

For All Devices:

0

dwCalledPartySize
dwCalledPartyOffset

For All Devices:

0

dwCommentSize
dwCommentOffset

For All Devices:

0

dwDisplaySize
dwDisplayOffset

For All Devices:

0

dwUserUserInfoSize
dwUserUserInfoOffset

For All Devices:

0

dwHighLevelCompSize
dwHighLevelCompOffset

For All Devices:

0

dwLowLevelCompSize
dwLowLevelCompOffset

For All Devices:

0

dwChargingInfoSize
dwChargingInfoOffset

For All Devices:

0

dwTerminalModesSize
dwTerminalModesOffset

For All Devices:

0

Members Values
5-88
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
dwDevSpecificSize
dwDevSpecificOffset

For All Devices:

If dwExtVersion >= 0x00060000 (6.0), this field will point to
TSP_Unicode_Party_Names structure,

If dwExtVersion >= 0x00070000 (7.0), this field will also point
to a common structure that has a pointer to SRTP structure,
DSCPValueForAudioCalls value, and Partition information.
The “LINECALLINFO” section on page 6-6 defines the
structure.

The ExtendedCallInfo structure contains ExtendedCallReason
that represents the last feature-related reason that caused a
change in the callinfo/callstatus for this call. The
ExtendedCallInfo will also provide SIP URL information for
all call parties.

If dwExtVersion >= 0x00080000 (8.0), this field will also point
to common structure which has pointer to CallSecurityStatus
structure.

For IP Phones: If dwExtVersion >= 0x00080000 (8.0), this
field will also point to common structure that has pointer to
CallAtributeInfo and CCMCallID structure. The structures are
defined below.

If dwExtVersion >= 0x00080000 (8.0), this field will also point
to common structure which has pointer to CallSecurityStatus
structure.

CallAttributeType: This field holds the information regarding
the following info (DN.Partition.DeviceName) is for regular
call, monitoring call, monitored call, recording call.

PartyDNOffset, PartyDNSize, provides the size, in bytes, of the
variably sized field that contains the
Monitoring/Monitored/Recorder party DN information and the
offset, in bytes, from the beginning of LINECALLINFO data
structure. PartyPartitionOffset PartyPartitionSize, provides the
size, in bytes, of the variably sized field that contains the
Monitoring/Monitored/Recorder party Partition information
and the offset, in bytes, from the beginning of
LINECALLINFO data structure.

DevcieNameSize provides the size, in bytes, of the variably
sized field that contains the Monitoring/Monitored/Recorder
party Device Name and the offset, in bytes, from the beginning
of LINECALLINFO data structure. OverallCallSecurityStatus
holds the security status of the call for two-party call as well for
conference call. CCMCallID field holds the CCM call Id for
each call leg.

dwCallTreatment For All Devices:

0

dwCallDataSize
dwCallDataOffset

For All Devices:

0

Members Values
5-89
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
LINECALLLIST
The LINECALLLIST structure describes a list of call handles. The lineGetNewCalls and
lineGetConfRelatedCalls functions return a structure of this type.

Note You must not extend this structure.

Structure Details

typedef struct linecalllist_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;
 DWORD dwCallsNumEntries;
 DWORD dwCallsSize;
 DWORD dwCallsOffset;
} LINECALLLIST, FAR *LPLINECALLLIST;

dwSendingFlowspecSize
dwSendingFlowspecOffset

For All Devices:

0

dwReceivingFlowspecSize
dwReceivingFlowspecOffset

For All Devices:

0

Members Values

Members Values

dwTotalSize The total size, in bytes, that is allocated to this data structure.

dwNeededSize The size, in bytes, for this data structure that is needed to hold
all the returned information.

dwUsedSize The size, in bytes, of the portion of this data structure that
contains useful information.

dwCallsNumEntries The number of handles in the hCalls array.

dwCallsSize
dwCallsOffset

The size, in bytes, and the offset, in bytes, from the beginning
of this data structure of the variably sized field (which is an
array of HCALL-sized handles).
5-90
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
LINECALLPARAMS

Members Values

dwBearerMode not supported

dwMinRate
dwMaxRate

not supported

dwMediaMode not supported

dwCallParamFlags not supported

dwAddressMode not supported

dwAddressID not supported

DialParams not supported

dwOrigAddressSize
dwOrigAddressOffset

not supported

dwDisplayableAddressSize
dwDisplayableAddressOffset

not supported

dwCalledPartySize
dwCalledPartyOffset

not supported

dwCommentSize
dwCommentOffset

not supported

dwUserUserInfoSize
dwUserUserInfoOffset

not supported

dwHighLevelCompSize
dwHighLevelCompOffset

not supported

dwLowLevelCompSize
dwLowLevelCompOffset

not supported

dwDevSpecificSize
dwDevSpecificOffset

not supported

dwPredictiveAutoTransferStates not supported

dwTargetAddressSize
dwTargetAddressOffset

not supported

dwSendingFlowspecSize
dwSendingFlowspecOffset

not supported

dwReceivingFlowspecSize
dwReceivingFlowspecOffset

not supported

dwDeviceClassSize
dwDeviceClassOffset

not supported

dwDeviceConfigSize
dwDeviceConfigOffset

not supported

dwCallDataSize
dwCallDataOffset

not supported
5-91
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
LINECALLSTATUS

dwNoAnswerTimeout For All Devices:
The number of seconds, after the completion of dialing, that the
call should be allowed to wait in the PROCEEDING or
RINGBACK state before the service provider automatically
abandons it with a LINECALLSTATE_DISCONNECTED and
LINEDISCONNECTMODE_NOANSWER. A value of 0
indicates that the application does not want automatic call
abandonment.

dwCallingPartyIDSize
dwCallingPartyIDOffset

not supported

Members Values

dwCallState For IP Phones and CTI Ports:
LINECALLSTATE_ACCEPTED
LINECALLSTATE_CONFERENCED
LINECALLSTATE_CONNECTED
LINECALLSTATE_DIALING
LINECALLSTATE_DIALTONE
LINECALLSTATE_DISCONNECTED
LINECALLSTATE_IDLE
LINECALLSTATE_OFFERING
LINECALLSTATE_ONHOLD
LINECALLSTATE_ONHOLDPENDCONF
LINECALLSTATE_ONHOLDPENDTRANSFER
LINECALLSTATE_PROCEEDING
LINECALLSTATE_RINGBACK
LINECALLSTATE_UNKNOWN

For CTI Route Points (without media):
LINECALLSTATE_ACCEPTED
LINECALLSTATE_DISCONNECTED
LINECALLSTATE_IDLE
LINECALLSTATE_OFFERING
LINECALLSTATE_UNKNOWN

For CTI Route Points (with media):
LINECALLSTATE_ACCEPTED
LINECALLSTATE_CONNECTED
LINECALLSTATE_DIALING
LINECALLSTATE_DIALTONE
LINECALLSTATE_DISCONNECTED
LINECALLSTATE_IDLE
LINECALLSTATE_OFFERING
LINECALLSTATE_ONHOLD
LINECALLSTATE_PROCEEDING
LINECALLSTATE_RINGBACK
LINECALLSTATE_UNKNOWN

Members Values
5-92
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
dwCallState (continued) For Park DNs:
LINECALLSTATE_ACCEPTED
LINECALLSTATE_CONFERENCED
LINECALLSTATE_CONNECTED
LINECALLSTATE_DISCONNECTED
LINECALLSTATE_IDLE
LINECALLSTATE_OFFERING
LINECALLSTATE_ONHOLD
LINECALLSTATE_UNKNOWN

dwCallStateMode For IP Phones, CTI Ports:
LINECONNECTEDMODE_ACTIVE
LINECONNECTEDMODE_INACTIVE
LINEDIALTONEMODE_NORMAL
LINEDIALTONEMODE_UNAVAIL
LINEDISCONNECTMODE_BADADDRESS
LINEDISCONNECTMODE_BUSY
LINEDISCONNECTMODE_CONGESTION
LINEDISCONNECTMODE_FORWARDED
LINEDISCONNECTMODE_NOANSWER
LINEDISCONNECTMODE_NORMAL
LINEDISCONNECTMODE_REJECT
LINEDISCONNECTMODE_TEMPFAILURE
LINEDISCONNECTMODE_UNREACHABLE
LINEDISCONNECTMODE_FACCMC (if negotiated
extension version is 0x00050000 or greater)

For CTI Route Points:
LINEDISCONNECTMODE_BADADDRESS
LINEDISCONNECTMODE_BUSY
LINEDISCONNECTMODE_CONGESTION
LINEDISCONNECTMODE_FORWARDED
LINEDISCONNECTMODE_NOANSWER
LINEDISCONNECTMODE_NORMAL
LINEDISCONNECTMODE_REJECT
LINEDISCONNECTMODE_TEMPFAILURE
LINEDISCONNECTMODE_UNREACHABLE
LINEDISCONNECTMODE_FACCMC (if negotiated
extension version is 0x00050000 or greater)

For Park DNs:
LINECONNECTEDMODE_ACTIVE
LINEDISCONNECTMODE_BADADDRESS
LINEDISCONNECTMODE_BUSY
LINEDISCONNECTMODE_CONGESTION
LINEDISCONNECTMODE_FORWARDED
LINEDISCONNECTMODE_NOANSWER
LINEDISCONNECTMODE_NORMAL
LINEDISCONNECTMODE_REJECT
LINEDISCONNECTMODE_TEMPFAILURE
LINEDISCONNECTMODE_UNREACHABLE

Members Values
5-93
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
dwCallPrivilege For All Devices
LINECALLPRIVILEGE_MONITOR
LINECALLPRIVILEGE_NONE
LINECALLPRIVILEGE_OWNER

dwCallFeatures For IP Phones (except VG248 and ATA186) and CTI Ports:
LINECALLFEATURE_ACCEPT
LINECALLFEATURE_ADDTOCONF
LINECALLFEATURE_ANSWER
LINECALLFEATURE_BLINDTRANSFER
LINECALLFEATURE_COMPLETETRANSF
LINECALLFEATURE_DIAL
LINECALLFEATURE_DROP
LINECALLFEATURE_GATHERDIGITS
LINECALLFEATURE_GENERATEDIGITS
LINECALLFEATURE_GENERATETONE
LINECALLFEATURE_HOLD
LINECALLFEATURE_MONITORDIGITS
LINECALLFEATURE_MONITORTONES
LINECALLFEATURE_PARK
LINECALLFEATURE_PREPAREADDTOCONF
LINECALLFEATURE_REDIRECT
LINECALLFEATURE_SETUPCONF
LINECALLFEATURE_SETUPTRANSFER
LINECALLFEATURE_UNHOLD
LINECALLFEATURE_UNPARK

For VG248 and ATA186 Devices:
LINECALLFEATURE_ACCEPT
LINECALLFEATURE_ADDTOCONF
LINECALLFEATURE_BLINDTRANSFER
LINECALLFEATURE_COMPLETETRANSF
LINECALLFEATURE_DIAL
LINECALLFEATURE_DROP
LINECALLFEATURE_GATHERDIGITS
LINECALLFEATURE_GENERATEDIGITS
LINECALLFEATURE_GENERATETONE
LINECALLFEATURE_HOLD
LINECALLFEATURE_MONITORDIGITS
LINECALLFEATURE_MONITORTONES
LINECALLFEATURE_PARK
LINECALLFEATURE_PREPAREADDTOCONF
LINECALLFEATURE_REDIRECT
LINECALLFEATURE_SETUPCONF
LINECALLFEATURE_SETUPTRANSFER
LINECALLFEATURE_UNHOLD
LINECALLFEATURE_UNPARK

Members Values
5-94
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
LINECARDENTRY
The LINECARDENTRY structure describes a calling card. The LINETRANSLATECAPS structure can
contain an array of LINECARDENTRY structures.

Note You must not extend this structure.

dwCallFeatures (continued) For CTI Route Points (without media):
LINECALLFEATURE_ACCEPT
LINECALLFEATURE_DROP
LINECALLFEATURE_REDIRECT

For CTI Route Points (with media):
LINECALLFEATURE_ACCEPT
LINECALLFEATURE_ANSWER
LINECALLFEATURE_BLINDTRANSFER
LINECALLFEATURE_DIAL
LINECALLFEATURE_DROP
LINECALLFEATURE_GATHERDIGITS
LINECALLFEATURE_GENERATEDIGITS
LINECALLFEATURE_GENERATETONE
LINECALLFEATURE_HOLD
LINECALLFEATURE_MONITORDIGITS
LINECALLFEATURE_MONITORTONES
LINECALLFEATURE_REDIRECT
LINECALLFEATURE_UNHOLD

dwCallFeatures (continued) For Park DNs:
0

dwDevSpecificSize
dwDevSpecificOffset

For All Devices:
0

dwCallFeatures2 For IP Phones and CTI Ports:
LINECALLFEATURE2_TRANSFERNORM
LINECALLFEATURE2_TRANSFERCONF

For CTI Route Points and Park DNs:
0

tStateEntryTime For All Devices:
The Coordinated Universal Time at which the current call state
was entered.

Members Values
5-95
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
Structure Details

typedef struct linecardentry_tag {
 DWORD dwPermanentCardID;
 DWORD dwCardNameSize;
 DWORD dwCardNameOffset;
 DWORD dwCardNumberDigits;
 DWORD dwSameAreaRuleSize;
 DWORD dwSameAreaRuleOffset;
 DWORD dwLongDistanceRuleSize;
 DWORD dwLongDistanceRuleOffset;
 DWORD dwInternationalRuleSize;
 DWORD dwInternationalRuleOffset;
 DWORD dwOptions;
} LINECARDENTRY, FAR *LPLINECARDENTRY;

Members

LINECOUNTRYENTRY
The LINECOUNTRYENTRY structure provides the information for a single country entry. An array of
one or more of these structures makes up part of the LINECOUNTRYLIST structure that the
lineGetCountry function returns.

Members Values

dwPermanentCardID The permanent identifier that identifies the card.

dwCardNameSize
dwCardNameOffset

A null-terminated string (size includes the NULL) that
describes the card in a user-friendly manner.

dwCardNumberDigits The number of digits in the existing card number. The card
number itself is not returned for security reasons (TAPI stores
it in scrambled form). The application can use this parameter to
insert filler bytes into a text control in “password” mode to
show that a number exists.

dwSameAreaRuleSize
dwSameAreaRuleOffset

The offset, in bytes, from the beginning of the
LINETRANSLATECAPS structure and the total number of
bytes in the dialing rule that is defined for calls to numbers in
the same area code. The rule specifies a null-terminated string.

dwLongDistanceRuleSize
dwLongDistanceRuleOffset

The offset, in bytes, from the beginning of the
LINETRANSLATECAPS structure and the total number of
bytes in the dialing rule that is defined for calls to numbers in
the other areas in the same country or region. The rule specifies
a null-terminated string.

dwInternationalRuleSize
dwInternationalRuleOffset

The offset, in bytes, from the beginning of the
LINETRANSLATECAPS structure and the total number of
bytes in the dialing rule that is defined for calls to numbers in
other countries/regions. The rule specifies a null-terminated
string.

dwOptions Indicates other settings that are associated with this calling
card, by using the LINECARDOPTION_
5-96
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
Note You must not extend this structure.

Structure Details

typedef struct linecountryentry_tag {
 DWORD dwCountryID;
 DWORD dwCountryCode;
 DWORD dwNextCountryID;
 DWORD dwCountryNameSize;
 DWORD dwCountryNameOffset;
 DWORD dwSameAreaRuleSize;
 DWORD dwSameAreaRuleOffset;
 DWORD dwLongDistanceRuleSize;
 DWORD dwLongDistanceRuleOffset;
 DWORD dwInternationalRuleSize;
 DWORD dwInternationalRuleOffset;
} LINECOUNTRYENTRY, FAR *LPLINECOUNTRYENTRY;

Members Values

dwCountryID The country or region identifier of the entry that specifies an
internal identifier that allows multiple entries to exist in the
country or region list with the same country code (for example,
all countries in North America and the Caribbean share country
code 1, but require separate entries in the list).

dwCountryCode The actual country code of the country or region that the entry
represents (that is, the digits that would be dialed in an
international call). Display only this value to users (Country
IDs should never display, as they could be confusing).

dwNextCountryID The country identifier of the next entry in the country or region
list. Because country codes and identifiers are not assigned in
numeric sequence, the country or region list represents a single
linked list, with each entry pointing to the next. The last country
or region in the list includes a dwNextCountryID value of zero.
When the LINECOUNTRYLIST structure is used to obtain the
entire list, the entries in the list appear in sequence as linked by
their dwNextCountryID members.

dwCountryNameSize
dwCountryNameOffset

The size, in bytes, and the offset, in bytes, from the beginning
of the LINECOUNTRYLIST structure of a null-terminated
string that gives the name of the country or region.

dwSameAreaRuleSize
dwSameAreaRuleOffset

The size, in bytes, and the offset, in bytes, from the beginning
of the LINECOUNTRYLIST structure of a null-terminated
string that contains the dialing rule for direct-dialed calls to the
same area code.
5-97
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
LINECOUNTRYLIST
The LINECOUNTRYLIST structure describes a list of countries/regions. This structure can contain an
array of LINECOUNTRYENTRY structures. The lineGetCountry function returns
LINECOUNTRYLIST.

Note You must not extend this structure.

Structure Details

typedef struct linecountrylist_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;
 DWORD dwNumCountries;
 DWORD dwCountryListSize;
 DWORD dwCountryListOffset;
} LINECOUNTRYLIST, FAR *LPLINECOUNTRYLIST;

dwLongDistanceRuleSize
dwLongDistanceRuleOffset

The size, in bytes, and the offset, in bytes, from the beginning
of the LINECOUNTRYLIST structure of a null-terminated
string that contains the dialing rule for direct-dialed calls to
other areas in the same country or region.

dwInternationalRuleSize
dwInternationalRuleOffset

The size, in bytes, and the offset, in bytes, from the beginning
of the LINECOUNTRYLIST structure of a null-terminated
string that contains the dialing rule for direct-dialed calls to
other countries/regions.

Members Values

Members Values

dwTotalSize The total size, in bytes, that are allocated to this data structure.

dwNeededSize The size, in bytes, for this data structure that is needed to hold
all the returned information.

dwUsedSize The size, in bytes, of the portion of this data structure that
contains useful information.

dwNumCountries The number of LINECOUNTRYENTRY structures that are
present in the array dwCountryListSize and
dwCountryListOffset dominate.

dwCountryListSize
dwCountryListOffset

The size, in bytes, and the offset, in bytes, from the beginning
of this data structure of an array of LINECOUNTRYENTRY
elements that provide information on each country or region.
5-98
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
LINEDEVCAPS

Members Values

dwProviderInfoSize
dwProviderInfoOffset

For All Devices:
The size, in bytes, of the variably sized field that contains
service provider information and the offset, in bytes, from the
beginning of this data structure. The dwProviderInfoSize/
Offset member provides information about the provider
hardware and/or software. This information is useful when a
user needs to call customer service with problems regarding the
provider. The Cisco Unified TSP sets this field to "Cisco
Unified TSPxxx.TSP: Cisco IP PBX Service Provider Ver.
x.x(x.x)" where the text before the colon specifies the file name
of the TSP and the text after "Ver." specifies the version of TSP.

dwSwitchInfoSize
dwSwitchInfoOffset

For All Devices:
The size, in bytes, of the variably sized device field that
contains switch information and the offset, in bytes, from the
beginning of this data structure. The dwSwitchInfoSize/Offset
member provides information about the switch to which the
line device connects, such as the switch manufacturer, the
model name, the software version, and so on. This information
is useful when a user needs to call customer service with
problems regarding the switch. The Cisco Unified TSP sets this
field to "Cisco Unified Communications Manager Ver. x.x(x.x),
Cisco CTI Manager Ver x.x(x.x)" where the text after "Ver."
specifies the version of the Cisco Unified Communications
Manager and the version of the CTI Manager, respectively.

dwPermanentLineID For All Devices:
The permanent DWORD identifier by which the line device is
known in the system configuration. This identifier specifies a
permanent name for the line device. This permanent name (as
opposed to dwDeviceID) does not change as lines are added or
removed from the system and persists through operating system
upgrades. You can therefore use it to link line-specific
information in .ini files (or other files) in a way that is not
affected by adding or removing other lines or by changing the
operating system.

dwLineNameSize
dwLineNameOffset

For All Devices:
The size, in bytes, of the variably sized device field that
contains a user-configurable name for this line device and the
offset, in bytes, from the beginning of this data structure. You
can configure this name when you configure the line device
service provider, and the name gets provided for the
convenience of the user. Cisco Unified TSP sets this field to
“Cisco Line: [deviceName] (dirn)” where deviceName
specifies the name of the device on which the line resides, and
dirn specifies the directory number for the device.

dwStringFormat For All Devices:
STRINGFORMAT_ASCII
5-99
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
dwAddressModes For All Devices:
LINEADDRESSMODE_ADDRESSID

dwNumAddresses For All Devices:
1

dwBearerModes For All Devices:
LINEBEARERMODE_SPEECH
LINEBEARERMODE_VOICE

dwMaxRate For All Devices:
0

dwMediaModes For IP Phones and Park DNs:
LINEMEDIAMODE_INTERACTIVEVOICE

For CTI Ports and CTI Route Points:
LINEMEDIAMODE_AUTOMATEDVOICE
LINEMEDIAMODE_INTERACTIVEVOICE

dwGenerateToneModes For IP Phones, CTI Ports, and CTI Route Points (with media):
LINETONEMODE_BEEP

For CTI Route Points (without media) and Park DNs:
0

dwGenerateToneMaxNumFreq For All Devices:
0

dwGenerateDigitModes For IP Phones, CTI Ports, and CTI Route Points (with media):
LINETONEMODE_DTMF

For CTI Route Points and Park DNs:
0

dwMonitorToneMaxNumFreq For All Devices:
0

dwMonitorToneMaxNumEntries For All Devices:
0

dwMonitorDigitModes For IP Phones, CTI Ports, and CTI Route Points (with media):
LINETONEMODE_DTMF

For CTI Route Points (without media) and Park DNs:
0

dwGatherDigitsMinTimeout
dwGatherDigitsMaxTimeout

For All Devices:
0

dwMedCtlDigitMaxListSize
dwMedCtlMediaMaxListSize
dwMedCtlToneMaxListSize
dwMedCtlCallStateMaxListSize

For All Devices:
0

dwDevCapFlags For IP Phones:
0

For All Other Devices:
LINEDEVCAPFLAGS_CLOSEDROP

Members Values
5-100
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
dwMaxNumActiveCalls For All Devices:
1

For CTI Route Points (without media):
0

For CTI Route Points (with media):
Cisco Unified Communications Manager Administration
configuration

dwAnswerMode For IP Phones (except for VG248 and ATA186), CTI Route
Points (with media) and CTI Ports:
LINEANSWERMODE_HOLD

For VG248 devices, ATA186 devices, CTI Route Points
(without media), and Park DNs:
0

dwRingModes For All Devices:
1

dwLineStates For IP Phones, CTI Ports, and Route Points (with media):
LINEDEVSTATE_CLOSE
LINEDEVSTATE_DEVSPECIFIC
LINEDEVSTATE_INSERVICE
LINEDEVSTATE_MSGWAITOFF
LINEDEVSTATE_MSGWAITON
LINEDEVSTATE_NUMCALLS
LINEDEVSTATE_OPEN
LINEDEVSTATE_OUTOFSERVICE
LINEDEVSTATE_REINIT
LINEDEVSTATE_RINGING
LINEDEVSTATE_TRANSLATECHANGE

For CTI Route Points (without media):
LINEDEVSTATE_CLOSE
LINEDEVSTATE_INSERVICE
LINEDEVSTATE_OPEN
LINEDEVSTATE_OUTOFSERVICE
LINEDEVSTATE_REINIT
LINEDEVSTATE_RINGING
LINEDEVSTATE_TRANSLATECHANGE

For Park DNs:
LINEDEVSTATE_CLOSE
LINEDEVSTATE_DEVSPECIFIC
LINEDEVSTATE_INSERVICE
LINEDEVSTATE_NUMCALLS
LINEDEVSTATE_OPEN
LINEDEVSTATE_OUTOFSERVICE
LINEDEVSTATE_REINIT
LINEDEVSTATE_TRANSLATECHANGE

dwUUIAcceptSize For All Devices:
0

Members Values
5-101
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
dwUUIAnswerSize For All Devices:
0

dwUUIMakeCallSize For All Devices:
0

dwUUIDropSize For All Devices:
0

dwUUISendUserUserInfoSize For All Devices:
0

dwUUICallInfoSize For All Devices:
0

MinDialParams
MaxDialParams

For All Devices:
0

DefaultDialParams For All Devices:
0

dwNumTerminals For All Devices:
0

dwTerminalCapsSize
dwTerminalCapsOffset

For All Devices:
0

dwTerminalTextEntrySize For All Devices:
0

dwTerminalTextSize
dwTerminalTextOffset

For All Devices:
0

dwDevSpecificSize
dwDevSpecificOffset

For All Devices (except ParkDNs):
If dwExtVersion > 0x00030000 (3.0):
LINEDEVCAPS_DEV_SPECIFIC.m_
DevSpecificFlags = 0

For Park DNs:
If dwExtVersion > 0x00030000 (3.0):
LINEDEVCAPS_DEV_SPECIFIC.m_
DevSpecificFlags =
LINEDEVCAPSDEVSPECIFIC_PARKDN

For Intercom DNs:
LINEDEVCAPS_DEV_SPECIFIC. M_DevSpecificFlags =
LINEDEVCAPSDEVSPECIFIC_INTERCOMDN
LOCALE info
PARTITION_INFO
INTERCOM_SPEEDDIAL_INFO

Members Values
5-102
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
LINEDEVSTATUS

dwLineFeatures For IP Phones, CTI Ports, and CTI Route Points (with media):
LINEFEATURE_DEVSPECIFIC
LINEFEATURE_FORWARD
LINEFEATURE_FORWARDFWD
LINEFEATURE_MAKECALL

For CTI Route Points (without media):
LINEFEATURE_FORWARD
LINEFEATURE_FORWARDFWD

For Park DNs:
0

dwSettableDevStatus For All Devices:
0

dwDeviceClassesSize
dwDeviceClassesOffset

For IP Phones and CTI Route Points:
"tapi/line"
"tapi/phone"

For CTI Ports:
"tapi/line"
"tapi/phone"
"wave/in"
"wave/out"

For Park DNs:
"tapi/line"

PermanentLineGuid The GUID that is permanently associated with the line device.

Members Values

dwNumOpens For All Devices:
The number of active opens on the line device.

dwOpenMediaModes For All Devices:
Bit array that indicates for which media types the line device is
currently open.

dwNumActiveCalls For All Devices:
The number of calls on the line in call states other than idle,
onhold, onholdpendingtransfer, and onholdpendingconference.

dwNumOnHoldCalls For All Devices:
The number of calls on the line in the onhold state.

dwNumOnHoldPendCalls For All Devices:
The number of calls on the line in the onholdpendingtransfer or
onholdpendingconference state.

Members Values
5-103
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
dwLineFeatures For IP Phones, CTI Ports, and CTI Route Points (with media):
LINEFEATURE_DEVSPECIFIC
LINEFEATURE_FORWARD
LINEFEATURE_FORWARDFWD
LINEFEATURE_MAKECALL

For CTI Route Points (without media):
LINEFEATURE_FORWARD
LINEFEATURE_FORWARDFWD

For Park DNs:
0

dwNumCallCompletions For All Devices:
0

dwRingMode For All Devices:
0

dwSignalLevel For All Devices:
0

dwBatteryLevel For All Devices:
0

dwRoamMode For All Devices:
0

dwDevStatusFlags For IP Phones and CTI Ports:
LINEDEVSTATUSGLAGS_CONNECTED
LINEDEVSTATUSGLAGS_INSERVICE
LINEDEVSTATUSGLAGS_MSGWAIT

For CTI Route Points and Park DNs:
LINEDEVSTATUSGLAGS_CONNECTED
LINEDEVSTATUSGLAGS_INSERVICE

dwTerminalModesSize
dwTerminalModesOffset

For All Devices:
0

dwDevSpecificSize
dwDevSpecificOffset

For All Devices:
0

dwAvailableMediaModes For All Devices:
0

dwAppInfoSize
dwAppInfoOffset

For All Devices:
Length, in bytes, and offset from the beginning of
LINEDEVSTATUS of an array of LINEAPPINFO structures.
The dwNumOpens member indicates the number of elements in
the array. Each element in the array identifies an application
that has the line open.

Members Values
5-104
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
LINEEXTENSIONID

LINEFORWARD
The LINEFORWARD structure describes an entry of the forwarding instructions.

Structure Details

typedef struct lineforward_tag {
 DWORD dwForwardMode;
 DWORD dwCallerAddressSize;
 DWORD dwCallerAddressOffset;
 DWORD dwDestCountryCode;
 DWORD dwDestAddressSize;
 DWORD dwDestAddressOffset;
} LINEFORWARD, FAR *LPLINEFORWARD;

Members Values

dwExtensionID0 For All Devices:
0x8EBD6A50

dwExtensionID1 For All Devices:
0x128011D2

dwExtensionID2 For All Devices:
0x905B0060

dwExtensionID3 For All Devices:
0xB03DD275

Members Values

dwForwardMode The types of forwarding. The dwForwardMode member can
have only a single bit set. This member uses the following
LINEFORWARDMODE_ constants:

LINEFORWARDMODE_UNCOND

Forward all calls unconditionally, irrespective of their
origin. Use this value when unconditional forwarding for
internal and external calls cannot be controlled separately.
Unconditional forwarding overrides forwarding on busy
and/or no-answer conditions.

Note LINEFORWARDMODE_UNCOND is the only
forward mode that Cisco Unified TSP supports.

LINEFORWARDMODE_UNCONDINTERNAL

Forward all internal calls unconditionally. Use this value
when unconditional forwarding for internal and external
calls can be controlled separately.
5-105
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
LINEFORWARDMODE_UNCONDEXTERNAL

Forward all external calls unconditionally. Use this value
when unconditional forwarding for internal and external
calls can be controlled separately.

LINEFORWARDMODE_UNCONDSPECIFIC

Unconditionally forward all calls that originated at a
specified address (selective call forwarding).

LINEFORWARDMODE_BUSY

Forward all calls on busy, irrespective of their origin. Use
this value when forwarding for internal and external calls
both on busy and on no answer cannot be controlled
separately.

LINEFORWARDMODE_BUSYINTERNAL

Forward all internal calls on busy. Use this value when
forwarding for internal and external calls on busy and on
no answer can be controlled separately.

LINEFORWARDMODE_BUSYEXTERNAL

Forward all external calls on busy. Use this value when
forwarding for internal and external calls on busy and on
no answer can be controlled separately.

Members Values
5-106
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
dwForwardMode (continued) LINEFORWARDMODE_BUSYSPECIFIC

Forward on busy all calls that originated at a specified
address (selective call forwarding).

LINEFORWARDMODE_NOANSW

Forward all calls on no answer, irrespective of their origin.
Use this value when call forwarding for internal and
external calls on no answer cannot be controlled
separately.

LINEFORWARDMODE_NOANSWINTERNAL

Forward all internal calls on no answer. Use this value
when forwarding for internal and external calls on no
answer can be controlled separately.

LINEFORWARDMODE_NOANSWEXTERNAL

Forward all external calls on no answer. Use this value
when forwarding for internal and external calls on no
answer can be controlled separately.

LINEFORWARDMODE_NOANSWSPECIFIC

Forward all calls that originated at a specified address on
no answer (selective call forwarding).

LINEFORWARDMODE_BUSYNA

Forward all calls on busy or no answer, irrespective of their
origin. Use this value when forwarding for internal and
external calls on both busy and on no answer cannot be
controlled separately.

LINEFORWARDMODE_BUSYNAINTERNAL

Forward all internal calls on busy or no answer. Use this
value when call forwarding on busy and on no answer
cannot be controlled separately for internal calls.

LINEFORWARDMODE_BUSYNAEXTERNAL

Forward all external calls on busy or no answer. Use this
value when call forwarding on busy and on no answer
cannot be controlled separately for internal calls.

LINEFORWARDMODE_BUSYNASPECIFIC

Forward on busy or no answer all calls that originated at a
specified address (selective call forwarding).

LINEFORWARDMODE_UNKNOWN

Calls get forwarded, but the conditions under which
forwarding occurs are not known at this time.

LINEFORWARDMODE_UNAVAIL

Calls are forwarded, but the conditions under which
forwarding occurs are not known and are never known by
the service provider.

Members Values
5-107
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
LINEFORWARDLIST
The LINEFORWARDLIST structure describes a list of forwarding instructions.

Structure Details

typedef struct lineforwardlist_tag {
 DWORD dwTotalSize;
 DWORD dwNumEntries;
 LINEFORWARD ForwardList[1];
} LINEFORWARDLIST, FAR *LPLINEFORWARDLIST;

LINEGENERATETONE
The LINEGENERATETONE structure contains information about a tone to be generated. The
lineGenerateTone and TSPI_lineGenerateTone functions use this structure.

Note You must not extend this structure.

This structure gets used only for the generation of tones; it is not used for tone monitoring.

dwCallerAddressSize
dwCallerAddressOffset

The size in bytes of the variably sized address field that
contains the address of a caller to be forwarded and the offset
in bytes from the beginning of the containing data structure.
The dwCallerAddressSize/Offset member gets set to zero if
dwForwardMode is not one of the following choices:
LINEFORWARDMODE_BUSYNASPECIFIC,
LINEFORWARDMODE_NOANSWSPECIFIC,
LINEFORWARDMODE_UNCONDSPECIFIC, or
LINEFORWARDMODE_BUSYSPECIFIC.

dwDestCountryCode The country code of the destination address to which the call is
to be forwarded.

dwDestAddressSize
dwDestAddressOffset

The size in bytes of the variably sized address field that
contains the address where calls are to be forwarded and the
offset in bytes from the beginning of the containing data
structure.

Members Values

Members Values

dwTotalSize The total size in bytes of the data structure.

dwNumEntries Number of entries in the array, specified as ForwardList[].

ForwardList[] An array of forwarding instruction. The array entries specify
type LINEFORWARD.
5-108
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
Structure Details

typedef struct linegeneratetone_tag {
 DWORD dwFrequency;
 DWORD dwCadenceOn;
 DWORD dwCadenceOff;
 DWORD dwVolume;
} LINEGENERATETONE, FAR *LPLINEGENERATETONE;

LINEINITIALIZEEXPARAMS
The LINEINITIZALIZEEXPARAMS structure describes parameters that are supplied when calls are
made by using LINEINITIALIZEEX.

Structure Details

typedef struct lineinitializeexparams_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;
 DWORD dwOptions;

 union
 {
 HANDLE hEvent;
 HANDLE hCompletionPort;
 } Handles;

 DWORD dwCompletionKey;

} LINEINITIALIZEEXPARAMS, FAR *LPLINEINITIALIZEEXPARAMS;

Members Values

dwFrequency The frequency, in hertz, of this tone component. A service
provider may adjust (round up or down) the frequency that the
application specified to fit its resolution.

dwCadenceOn The “on” duration, in milliseconds, of the cadence of the
custom tone to be generated. Zero means no tone gets
generated.

dwCadenceOff The “off” duration, in milliseconds, of the cadence of the
custom tone to be generated. Zero means no off time, that is, a
constant tone.

dwVolume The volume level at which the tone gets generated. A value of
0x0000FFFF represents full volume, and a value of
0x00000000 means silence.

Members Values

dwTotalSize The total size, in bytes, that is allocated to this data structure.

dwNeededSize The size, in bytes, for this data structure that is needed to hold
all the returned information.
5-109
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
Further Details

See “lineInitializeEx” for further information on these options.

LINELOCATIONENTRY
The LINELOCATIONENTRY structure describes a location that is used to provide an address
translation context. The LINETRANSLATECAPS structure can contain an array of
LINELOCATIONENTRY structures.

Note You must not extend this structure.

Structure Details

typedef struct linelocationentry_tag {
 DWORD dwPermanentLocationID;
 DWORD dwLocationNameSize;
 DWORD dwLocationNameOffset;

 DWORD dwCityCodeSize;
 DWORD dwCityCodeOffset;
 DWORD dwPreferredCardID;
 DWORD dwLocalAccessCodeSize;
 DWORD dwLocalAccessCodeOffset;
 DWORD dwLongDistanceAccessCodeSize;
 DWORD dwLongDistanceAccessCodeOffset;
 DWORD dwTollPrefixListSize;
 DWORD dwTollPrefixListOffset;
 DWORD dwCountryID;

dwUsedSize The size, in bytes, of the portion of this data structure that
contains useful information.

dwOptions One of the LINEINITIALIZEEXOPTION_ constants.
Specifies the event notification mechanism that the
application wants to use.

hEvent If dwOptions specifies
LINEINITIALIZEEXOPTION_USEEVENT,
TAPI returns the event handle in this field.

hCompletionPort If dwOptions specifies
LINEINITIALIZEEXOPTION_USECOMPLETIONPORT,
the application must specify in this field the handle of an
existing completion port that was opened by using
CreateIoCompletionPort.

dwCompletionKey If dwOptions specifies
LINEINITIALIZEEXOPTION_USECOMPLETIONPORT,
the application must specify in this field a value that is
returned through the lpCompletionKey parameter of
GetQueuedCompletionStatus to identify the completion
message as a telephony message.

Members Values
5-110
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
 DWORD dwOptions;
 DWORD dwCancelCallWaitingSize;
 DWORD dwCancelCallWaitingOffset;
} LINELOCATIONENTRY, FAR *LPLINELOCATIONENTRY;

Members Values

dwPermanentLocationID The permanent identifier that identifies the location.

dwLocationNameSize
dwLocationNameOffset

Contains a null-terminated string (size includes the NULL) that
describes the location in a user-friendly manner.

dwCountryCode The country code of the location.

dwPreferredCardID The preferred calling card when dialing from this location.

dwCityCodeSize
dwCityCodeOffset

Contains a null-terminated string that specifies the city or area
code that is associated with the location (the size includes the
NULL). Applications can use this information, along with the
country code, to “default” entry fields for the user when you
enter the phone numbers, to encourage the entry of proper
canonical numbers.

dwLocalAccessCodeSize
dwLocalAccessCodeOffset

The size, in bytes, and the offset, in bytes, from the beginning
of the LINETRANSLATECAPS structure of a null-terminated
string that contains the access code to be dialed before calls to
addresses in the local calling area.

dwLongDistanceAccessCodeSize
dwLongDistanceAccessCodeOffset

The size, in bytes, and the offset, in bytes, from the beginning
of the LINETRANSLATECAPS structure of a null-terminated
string that contains the access code to be dialed before calls to
addresses outside the local calling area.

dwTollPrefixListSize
dwTollPrefixListOffset

The size, in bytes, and the offset, in bytes, from the beginning
of the LINETRANSLATECAPS structure of a null-terminated
string that contains the toll prefix list for the location. The
string contains only prefixes that consist of the digits “0”
through “9” and are separated from each other by a single “,”
(comma) character.

dwCountryID The country identifier of the country or region that is selected
for the location. Use this identifier with the lineGetCountry
function to obtain additional information about the specific
country or region, such as the country or region name (you
cannot use the dwCountryCode member for this purpose
because country codes are not unique).

dwOptions Indicates options in effect for this location with values taken
from the LINELOCATIONOPTION_ Constants.
5-111
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
LINEMESSAGE
The LINEMESSAGE structure contains parameter values that specify a change in status of the line that
the application currently has open. The lineGetMessage function returns the LINEMESSAGE structure.

Structure Details

typedef struct linemessage_tag {
 DWORD hDevice;
 DWORD dwMessageID;
 DWORD_PTR dwCallbackInstance;
 DWORD_PTR dwParam1;
 DWORD_PTR dwParam2;
 DWORD_PTR dwParam3;
} LINEMESSAGE, FAR *LPLINEMESSAGE;

Further Details

For details about the parameter values that are passed in this structure, see “TAPI Line Messages.”

dwCancelCallWaitingSize
dwCancelCallWaitingOffset

The size, in bytes, and the offset, in bytes, from the beginning
of the LINETRANSLATECAPS structure of a null-terminated
string that contains the dial digits and modifier characters that
should be prefixed to the dialable string (after the pulse/tone
character) when an application sets the
LINETRANSLATEOPTION_CANCELCALLWAITING bit
in the dwTranslateOptions parameter of lineTranslateAddress.
If no prefix is defined, dwCancelCallWaitingSize set to zero
may indicate this, or dwCancelCallWaitingSize set to 1 and
dwCancelCallWaitingOffset pointing to an empty string (single
NULL byte) may indicate this.

Members Values

Members Values

hDevice A handle to either a line device or a call. The context that
dwMessageID provides can determine the nature of this handle
(line handle or call handle).

dwMessageID A line or call device message.

dwCallbackInstance Instance data passed back to the application, which the
application in the dwCallBackInstance parameter of
lineInitializeEx specified. TAPI does not interpret this
DWORD.

dwParam1 A parameter for the message.

dwParam2 A parameter for the message.

dwParam3 A parameter for the message.
5-112
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
LINEMONITORTONE
The LINEMONITORTONE structure defines a tone for the purpose of detection. Use this as an entry in
an array. An array of tones gets passed to the lineMonitorTones function that monitors these tones and
sends a LINE_MONITORTONE message to the application when a detection is made.

A tone with all frequencies set to zero corresponds to silence. An application can thus monitor the call
information stream for silence.

Note You must not extend this structure.

Structure Details

typedef struct linemonitortone_tag {
 DWORD dwAppSpecific;
 DWORD dwDuration;
 DWORD dwFrequency1;
 DWORD dwFrequency2;
 DWORD dwFrequency3;
} LINEMONITORTONE, FAR *LPLINEMONITORTONE;

LINEPROVIDERENTRY
The LINEPROVIDERENTRY structure provides the information for a single service provider entry. An
array of these structures gets returned as part of the LINEPROVIDERLIST structure that the function
lineGetProviderList returns.

Note You cannot extend this structure.

Structure Details

typedef struct lineproviderentry_tag {
 DWORD dwPermanentProviderID;
 DWORD dwProviderFilenameSize;
 DWORD dwProviderFilenameOffset;

Members Values

dwAppSpecific Used by the application for tagging the tone. When this tone is
detected, the value of the dwAppSpecific member gets passed
back to the application.

dwDuration The duration, in milliseconds, during which the tone should be
present before a detection is made.

dwFrequency1 dwFrequency2

dwFrequency3 The frequency, in hertz, of a component of the tone. If fewer
than three frequencies are needed in the tone, a value of 0
should be used for the unused frequencies. A tone with all three
frequencies set to zero gets interpreted as silence and can be
used for silence detection.
5-113
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
} LINEPROVIDERENTRY, FAR *LPLINEPROVIDERENTRY;

LINEPROVIDERLIST
The LINEPROVIDERLIST structure describes a list of service providers. The lineGetProviderList
function returns a structure of this type. The LINEPROVIDERLIST structure can contain an array of
LINEPROVIDERENTRY structures.

Note You must not extend this structure.

Structure Details

typedef struct lineproviderlist_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;
DWORD dwNumProviders;
 DWORD dwProviderListSize;
 DWORD dwProviderListOffset;
} LINEPROVIDERLIST, FAR *LPLINEPROVIDERLIST;

Members Values

dwPermanentProviderID The permanent provider identifier of the entry.

dwProviderFilenameSize
dwProviderFilenameOffset

The size, in bytes, and the offset, in bytes, from the beginning
of the LINEPROVIDERLIST structure of a null-terminated
string that contains the filename (path) of the service provider
DLL (.TSP) file.

Members Values

dwTotalSize The total size, in bytes, that are allocated to this
data structure.

dwNeededSize The size, in bytes, for this data structure that is
needed to hold all the returned information.

dwUsedSize The size, in bytes, of the portion of this data
structure that contains useful information.

dwNumProviders The number of LINEPROVIDERENTRY
structures that are present in the array that is
denominated by dwProviderListSize and
dwProviderListOffset.

dwProviderListSize
dwProviderListOffset

 The size, in bytes, and the offset, in bytes, from
the beginning of this data structure of an array of
LINEPROVIDERENTRY elements, which
provide the information on each service provider.
5-114
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
LINEREQMAKECALL
The LINEREQMAKECALL structure describes a request that a call initiated to the lineGetRequest
function.

Note You cannot extend this structure.

Structure Details

typedef struct linereqmakecall_tag {
 char szDestAddress[TAPIMAXDESTADDRESSSIZE];
 char szAppName[TAPIMAXAPPNAMESIZE];
 char szCalledParty[TAPIMAXCALLEDPARTYSIZE];
 char szComment[TAPIMAXCOMMENTSIZE];
} LINEREQMAKECALL, FAR *LPLINEREQMAKECALL;

LINETRANSLATECAPS
The LINETRANSLATECAPS structure describes the address translation capabilities. This structure can
contain an array of LINELOCATIONENTRY structures and an array of LINECARDENTRY structures.
the lineGetTranslateCaps function returns the LINETRANSLATECAPS structure.

Note You must not extend this structure.

Structure Details

typedef struct linetranslatecaps_tag {

Members Values

szDestAddress
[TAPIMAXADDRESSSIZE]

The null-terminated destination address of the make-call
request. The address uses the canonical address format or the
dialable address format. The maximum length of the address
specifies TAPIMAXDESTADDRESSSIZE characters, which
include the NULL terminator. Longer strings get truncated.

szAppName
[TAPIMAXAPPNAMESIZE]

The null-terminated, user-friendly application name or
filename of the application that originated the request. The
maximum length of the address specifies
TAPIMAXAPPNAMESIZE characters, which include the
NULL terminator.

szCalledParty
[TAPIMAXCALLEDPARTYSIZE]

The null-terminated, user-friendly called-party name. The
maximum length of the called-party information specifies
TAPIMAXCALLEDPARTYSIZE characters, which include
the NULL terminator.

szComment
[TAPIMAXCOMMENTSIZE]

The null-terminated comment about the call request. The
maximum length of the comment string specifies
TAPIMAXCOMMENTSIZE characters, which include the
NULL terminator.
5-115
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;
 DWORD dwNumLocations;
 DWORD dwLocationListSize;
 DWORD dwLocationListOffset;
 DWORD dwCurrentLocationID;
 DWORD dwNumCards;
 DWORD dwCardListSize;
 DWORD dwCardListOffset;
 DWORD dwCurrentPreferredCardID;
} LINETRANSLATECAPS, FAR *LPLINETRANSLATECAPS;

LINETRANSLATEOUTPUT
The LINETRANSLATEOUTPUT structure describes the result of an address translation. The
lineTranslateAddress function uses this structure.

Note You must not extend this structure.

Members Values

dwTotalSize The total size, in bytes, that is allocated to this data structure.

dwNeededSize The size, in bytes, for this data structure that is needed to hold
all the returned information.

dwUsedSize The size, in bytes, of the portion of this data structure that
contains useful information.

dwNumLocations The number of entries in the location list. It includes all
locations that are defined, including zero (default).

dwLocationListSize
dwLocationListOffset

List of locations that are known to the address translation. The
list comprises a sequence of LINELOCATIONENTRY
structures. The dwLocationListOffset member points to the
first byte of the first LINELOCATIONENTRY structure, and
the dwLocationListSize member indicates the total number of
bytes in the entire list.

dwCurrentLocationID The dwPermanentLocationID member from the
LINELOCATIONENTRY structure for the CurrentLocation.

dwNumCards The number of entries in the CardList.

dwCardListSize
dwCardListOffset

List of calling cards that are known to the address translation.
It includes only non-hidden card entries and always includes
card 0 (direct dial). The list comprises a sequence of
LINECARDENTRY structures. The dwCardListOffset
member points to the first byte of the first LINECARDENTRY
structure, and the dwCardListSize member indicates the total
number of bytes in the entire list.

dwCurrentPreferredCardID The dwPreferredCardID member from the
LINELOCATIONENTRY structure for the CurrentLocation.
5-116
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
Structure Details

typedef struct linetranslateoutput_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;
 DWORD dwDialableStringSize;
 DWORD dwDialableStringOffset;
 DWORD dwDisplayableStringSize;
 DWORD dwDisplayableStringOffset;
 DWORD dwCurrentCountry;
 DWORD dwDestCountry;
 DWORD dwTranslateResults;
} LINETRANSLATEOUTPUT, FAR *LPLINETRANSLATEOUTPUT;

Members Values

dwTotalSize The total size, in bytes, that is allocated to this data structure.

dwNeededSize The size, in bytes, for this data structure that is needed to hold
all the returned information.

dwUsedSize The size, in bytes, of the portion of this data structure that
contains useful information.

dwDialableStringSize
dwDialableStringOffset

Contains the translated output that can be passed to the
lineMakeCall, lineDial, or other function that requires a
dialable string. The output always comprises a null-terminated
string (NULL gets included in the count in
dwDialableStringSize). This output string includes ancillary
fields such as name and subaddress if they were in the input
string. This string may contain private information such as
calling card numbers. To prevent inadvertent visibility to
unauthorized persons, it should not display to the user.

dwDisplayableStringSize
dwDisplayableStringOffset

Contains the translated output that can display to the user for
confirmation. Identical to DialableString, except the “friendly
name” of the card enclosed within bracket characters (for
example, “[AT&T Card]”) replaces calling card digits. The
ancillary fields, such as name and subaddress, get removed.
You can display this string in call-status dialog boxes without
exposing private information to unauthorized persons. You can
also include this information in call logs.

dwCurrentCountry Contains the country code that is configured in
CurrentLocation. Use this value to control the display by the
application of certain user interface elements for local call
progress tone detection and for other purposes.
5-117
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Line Device Structures
dwDestCountry Contains the destination country code of the translated address.
This value may pass to the dwCountryCode parameter of
lineMakeCall and other dialing functions (so the call progress
tones of the destination country or region such as a busy signal
are properly detected). This field gets set to zero if the
destination address that is passed to lineTranslateAddress is not
in canonical format.

dwTranslateResults Indicates the information that is derived from the translation
process, which may assist the application in presenting
user-interface elements. This field uses one
LINETRANSLATERESULT_.

Members Values
5-118
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Phone Functions
TAPI Phone Functions
TAPI phone functions enable an application to control physical aspects of a phone

phoneCallbackFunc
The phoneCallbackFunc function provides a placeholder for the application-supplied function name.

All callbacks occur in the application context. The callback function must reside in a dynamic-link
library (DLL) or application module and be exported in the module-definition file.

Function Details

VOID FAR PASCAL phoneCallbackFunc(
 HANDLE hDevice,
 DWORD dwMsg,
 DWORD dwCallbackInstance,
 DWORD dwParam1,
 DWORD dwParam2,
 DWORD dwParam3
);

Table 5-4 TAPI Phone Functions

TAPI Phone Functions

phoneCallbackFunc

phoneClose

phoneDevSpecific

phoneGetDevCaps

phoneGetDisplay

phoneGetLamp

phoneGetMessage

phoneGetRing

phoneGetStatus

phoneGetStatusMessages

phoneInitialize

phoneInitializeEx

phoneNegotiateAPIVersion

phoneOpen

phoneSetDisplay

phoneSetLamp

phoneSetStatusMessages

phoneShutdown
5-119
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Phone Functions
Parameters

hDevice

A handle to a phone device that is associated with the callback.

dwMsg

A line or call device message.

dwCallbackInstance

Callback instance data that is passed to the application in the callback. TAPI does not interpret this
DWORD.

dwParam1

A parameter for the message.

dwParam2

A parameter for the message.

dwParam3

A parameter for the message.

Further Details

For more information about the parameters that are passed to this callback function, see “TAPI Line
Messages” and “TAPI Phone Messages.”

phoneClose
The phoneClose function closes the specified open phone device.

Function Details

LONG phoneClose(
 HPHONE hPhone
);

Parameter

hPhone

A handle to the open phone device that is to be closed. If the function succeeds, this means that the
handle is no longer valid.

phoneDevSpecific
The phoneDevSpecific function gets used as a general extension mechanism to enable a telephony API
implementation to provide features that are not described in the other TAPI functions. The meanings of
these extensions are device specific.

When used with the Cisco Unified TSP, you can use phoneDevSpecific to send device-specific data to
a phone device.
5-120
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Phone Functions
Function Details

LONG WINAPI phoneDevSpecific (
HPHONE hPhone,
LPVOID lpParams,
DWORD dwSize

);

Parameter

hPhone

A handle to a phone device.

lpParams

A pointer to a memory area used to hold a parameter block. Its interpretation is device specific.
TAPI passes the contents of the parameter block unchanged to or from the service provider.

dwSize

The size in bytes of the parameter block area.

phoneGetDevCaps
The phoneGetDevCaps function queries a specified phone device to determine its telephony capabilities.

Function Details

LONG phoneGetDevCaps(
 HPHONEAPP hPhoneApp,
 DWORD dwDeviceID,
 DWORD dwAPIVersion,
 DWORD dwExtVersion,
 LPPHONECAPS lpPhoneCaps
);

Parameters

hPhoneApp

The handle to the registration with TAPI for this application.

dwDeviceID

The phone device that is to be queried.

dwAPIVersion

The version number of the telephony API that is to be used. The high-order word contains the major
version number; the low-order word contains the minor version number. You can obtain this number
with the function phoneNegotiateAPIVersion.

dwExtVersion

The version number of the service provider-specific extensions to be used. This number is obtained
with the function phoneNegotiateExtVersion. It can be left as zero if no device-specific extensions
are to be used. Otherwise, the high-order word contains the major version number, the low-order
word contains the minor version number.
5-121
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Phone Functions
lpPhoneCaps

A pointer to a variably sized structure of type PHONECAPS. Upon successful completion of the
request, this structure is filled with phone device capabilities information.

phoneGetDisplay
The phoneGetDisplay function returns the current contents of the specified phone display.

Function Details

LONG phoneGetDisplay(
 HPHONE hPhone,
 LPVARSTRING lpDisplay
);

Parameters

hPhone

A handle to the open phone device.

lpDisplay

A pointer to the memory location where the display content is to be stored, of type VARSTRING.

phoneGetLamp
The phoneGetLamp function returns the current lamp mode of the specified lamp.

Note Cisco Unified IP Phones 79xx series do not support this function.

Function Details

LONG phoneGetLamp(
 HPHONE hPhone,
 DWORD dwButtonLampID,
 LPDWORD lpdwLampMode
);

Parameters

hPhone

A handle to the open phone device.

dwButtonLampID

The identifier of the lamp that is to be queried. See Table 5-7, “Phone Button Values” for lamp IDs.
5-122
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Phone Functions
lpdwLampMode

Note Cisco Unified IP Phones 79xx series do not support this function.

A pointer to a memory location that holds the lamp mode status of the given lamp. The
lpdwLampMode parameter can have at most one bit set. This parameter uses the following
PHONELAMPMODE_ constants:

 – PHONELAMPMODE_FLASH - Flash means slow on and off.

 – PHONELAMPMODE_FLUTTER - Flutter means fast on and off.

 – PHONELAMPMODE_OFF - The lamp is off.

 – PHONELAMPMODE_STEADY - The lamp is continuously lit.

 – PHONELAMPMODE_WINK - The lamp winks.

 – PHONELAMPMODE_UNKNOWN - The lamp mode is currently unknown.

 – PHONELAMPMODE_DUMMY - Use this value to describe a button/lamp position that has no
corresponding lamp.

phoneGetMessage
The phoneGetMessage function returns the next TAPI message that is queued for delivery to an
application that is using the Event Handle notification mechanism (see phoneInitializeEx for further
details).

Function Details

LONG WINAPI phoneGetMessage(
 HPHONEAPP hPhoneApp,
 LPPHONEMESSAGE lpMessage,
 DWORD dwTimeout
);

Parameters

hPhoneApp

The handle that phoneInitializeEx returns. The application must have set the
PHONEINITIALIZEEXOPTION_USEEVENT option in the dwOptions member of the
PHONEINITIALIZEEXPARAMS structure.

lpMessage

A pointer to a PHONEMESSAGE structure. Upon successful return from this function, the structure
contains the next message that had been queued for delivery to the application.

dwTimeout

The time-out interval, in milliseconds. The function returns if the interval elapses, even if no
message can be returned. If dwTimeout is zero, the function checks for a queued message and
returns immediately. If dwTimeout is INFINITE, the time-out interval never elapses.
5-123
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Phone Functions
Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values
follow:

PHONEERR_INVALAPPHANDLE, PHONEERR_OPERATIONFAILED,
PHONEERR_INVALPOINTER, PHONEERR_NOMEM.

phoneGetRing
The phoneGetRing function enables an application to query the specified open phone device as to its
current ring mode.

Function Details

LONG phoneGetRing(
 HPHONE hPhone,
 LPDWORD lpdwRingMode,
 LPDWORD lpdwVolume
);

Parameters

hPhone

A handle to the open phone device.

lpdwRingMode

The ringing pattern with which the phone is ringing. Zero indicates that the phone is not ringing.

The system supports four ring modes.

Table 5-5 lists the valid ring modes.

lpdwVolume

The volume level with which the phone is ringing. This parameter has no meaning; the value 0x8000
always gets returned.

Table 5-5 Ring Modes

Ring Modes Definition

0 Off

1 Inside Ring

2 Outside Ring

3 Feature Ring
5-124
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Phone Functions
phoneGetStatus
The phoneGetStatus function enables an application to query the specified open phone device for its
overall status.

Function Details
LONG WINAPI phoneGetStatusMessages(

HPHONE hPhone,
LPPHONESTATUS lpPhoneStatus
) ;

Parameters

hPhone

A handle to the open phone device to be queried.

lpPhoneStatus

A pointer to a variably sized data structure of type PHONESTATUS, which is loaded with the
returned information about the phone status.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Return values include the
following:

PHONEERR_INVALPHONEHANDLE, PHONEERR_NOMEM PHONEERR_INVALPOINTER,
PHONEERR_RESOURCEUNAVAIL PHONEERR_OPERATIONFAILED,
PHONEERR_STRUCTURETOOSMALL PHONEERR_OPERATIONUNAVAIL,
PHONEERR_UNINITIALIZED

phoneGetStatusMessages
The phoneGetStatusMessages function returns information about which phone-state changes on the
specified phone device generate a callback to the application.

An application can use phoneGetStatusMessages to query the generation of the corresponding messages.
The phoneSetStatusMessages can control Message generation. All phone status messages remain
disabled by default.

Function Details
LONG WINAPI phoneGetStatusMessages(
 HPHONE hPhone,
 LPDWORD lpdwPhoneStates,
 LPDWORD lpdwButtonModes,
 LPDWORD lpdwButtonStates
);

Parameters

hPhone
5-125
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Phone Functions
A handle to the open phone device that is to be monitored.

lpdwPhoneStates

A pointer to a DWORD holding zero, one or more of the PHONESTATE_ Constants. These flags
specify the set of phone status changes and events for which the application can receive notification
messages. You can enable or disable monitoring individually for the following states:

 – PHONESTATE_OTHER

 – PHONESTATE_CONNECTED

 – PHONESTATE_DISCONNECTED

 – PHONESTATE_OWNER

 – PHONESTATE_MONITORS

 – PHONESTATE_DISPLAY

 – PHONESTATE_LAMP

 – PHONESTATE_RINGMODE

 – PHONESTATE_RINGVOLUME

 – PHONESTATE_HANDSETHOOKSWITCH

 – PHONESTATE_HANDSETVOLUME

 – PHONESTATE_HANDSETGAIN

 – PHONESTATE_SPEAKERHOOKSWITCH

 – PHONESTATE_SPEAKERVOLUME

 – PHONESTATE_SPEAKERGAIN

 – PHONESTATE_HEADSETHOOKSWITCH

 – PHONESTATE_HEADSETVOLUME

 – PHONESTATE_HEADSETGAIN

 – PHONESTATE_SUSPEND

 – PHONESTATE_RESUMEF

 – PHONESTATE_DEVSPECIFIC

 – PHONESTATE_REINIT

 – PHONESTATE_CAPSCHANGE

 – PHONESTATE_REMOVED

lpdwButtonModes

A pointer to a DWORD that contains flags that specify the set of phone-button modes for which the
application can receive notification messages. This parameter uses zero, one, or more of the
PHONEBUTTONMODE_ Constants.

lpdwButtonStates

A pointer to a DWORD that contains flags that specify the set of phone button state changes for
which the application can receive notification messages. This parameter uses zero, one, or more of
the PHONEBUTTONSTATE_ Constants.
5-126
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Phone Functions
Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values
follow:

PHONEERR_INVALPHONEHANDLE

PHONEERR_NOMEM

PHONEERR_INVALPOINTER

PHONEERR_RESOURCEUNAVAIL

PHONEERR_OPERATIONFAILED

PHONEERR_UNINITIALIZED.

phoneInitialize
Although the phoneInitialize function is obsolete, tapi.dll and tapi32.dll continue to export it for
backward compatibility with applications that are using TAPI versions 1.3 and 1.4.

Function Details
LONG WINAPI phoneInitialize(
 LPHPHONEAPP lphPhoneApp,
 HINSTANCE hInstance,
 PHONECALLBACK lpfnCallback,
 LPCSTR lpszAppName,
 LPDWORD lpdwNumDevs
);

Parameters

lphPhoneApp

A pointer to a location that is filled with the application usage handle for TAPI.

hInstance

The instance handle of the client application or DLL.

lpfnCallback

The address of a callback function that is invoked to determine status and events on the phone
device.

lpszAppName

A pointer to a null-terminated string that contains displayable characters. If this parameter is
non-NULL, it contains an application-supplied name of the application. This name, which is
provided in the PHONESTATUS structure, indicates, in a user-friendly way, which application is
the current owner of the phone device. You can use this information for logging and status reporting
purposes. If lpszAppName is NULL, the application filename gets used instead.

lpdwNumDevs

A pointer to DWORD. This location gets loaded with the number of phone devices that are available
to the application.
5-127
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Phone Functions
Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values
follow:

PHONEERR_INVALAPPNAME

PHONEERR_INIFILECORRUPT

PHONEERR_INVALPOINTER

PHONEERR_NOMEM

PHONEERR_OPERATIONFAILED

PHONEERR_REINIT

PHONEERR_RESOURCEUNAVAIL

PHONEERR_NODEVICE

PHONEERR_NODRIVER

PHONEERR_INVALPARAM

phoneInitializeEx
The phoneInitializeEx function initializes the application use of TAPI for subsequent use of the phone
abstraction. It registers the application specified notification mechanism and returns the number of
phone devices that are available to the application. A phone device represents any device that provides
an implementation for the phone-prefixed functions in the telephony API.

Function Details

LONG WINAPI phoneInitializeEx(
 LPHPHONEAPP lphPhoneApp,
 HINSTANCE hInstance,
 PHONECALLBACK lpfnCallback,
 LPCSTR lpszFriendlyAppName,
 LPDWORD lpdwNumDevs,
 LPDWORD lpdwAPIVersion,
 LPPHONEINITIALIZEEXPARAMS lpPhoneInitializeExParams
);

Parameters

lphPhoneApp

A pointer to a location that is filled with the application usage handle for TAPI.

hInstance

The instance handle of the client application or DLL. The application or DLL can pass NULL for
this parameter, in which case TAPI uses the module handle of the root executable of the process.
5-128
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Phone Functions
lpfnCallback

The address of a callback function that is invoked to determine status and events on the line device,
addresses, or calls, when the application is using the "hidden window" method of event notification
(for more information, see phoneCallbackFunc). When the application chooses to use the event
handle or completion port event notification mechanisms, this parameter gets ignored and should be
set to NULL.

lpszFriendlyAppName

A pointer to a null-terminated string that contains only displayable characters. If this parameter is
not NULL, it contains an application-supplied name for the application. This name, which is
provided in the PHONESTATUS structure, indicates, in a user-friendly way, which application has
ownership of the phone device. If lpszFriendlyAppName is NULL, the application module filename
gets used instead (as returned by the Windows function GetModuleFileName).

lpdwNumDevs

A pointer to a DWORD. Upon successful completion of this request, the number of phone devices
that are available to the application fills this location.

lpdwAPIVersion

A pointer to a DWORD. The application must initialize this DWORD, before calling this function,
to the highest API version that it is designed to support (for example, the same value that it would
pass into dwAPIHighVersion parameter of phoneNegotiateAPIVersion). Do no use artificially high
values; ensure the values are accurately set. TAPI translates any newer messages or structures into
values or formats that the application version supports. Upon successful completion of this request,
the highest API version that TAPI supports fills this location, which allows the application to detect
and adapt to being installed on a system with an older version of TAPI.

lpPhoneInitializeExParams

A pointer to a structure of type PHONEINITIALIZEEXPARAMS that contains additional
parameters that are used to establish the association between the application and TAPI (specifically,
the application-selected event notification mechanism and associated parameters).

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values
follow:

PHONEERR_INVALAPPNAME

PHONEERR_OPERATIONFAILED

PHONEERR_INIFILECORRUPT

PHONEERR_INVALPOINTER

PHONEERR_REINIT

PHONEERR_NOMEM

PHONEERR_INVALPARAM
5-129
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Phone Functions
phoneNegotiateAPIVersion
Use the phoneNegotiateAPIVersion function to negotiate the API version number to be used with the
specified phone device. It returns the extension identifier that the phone device supports, or zeros if no
extensions are provided.

Function Details
LONG WINAPI phoneNegotiateAPIVersion(
 HPHONEAPP hPhoneApp,
 DWORD dwDeviceID,
 DWORD dwAPILowVersion,
 DWORD dwAPIHighVersion,
 LPDWORD lpdwAPIVersion,
 LPPHONEEXTENSIONID lpExtensionID
);

Parameters

hPhoneApp

The handle to the application registration with TAPI.

dwDeviceID

The phone device to be queried.

dwAPILowVersion

The least recent API version with which the application is compliant. The high-order word
represents the major version number, and the low-order word represents the minor version number.

dwAPIHighVersion

The most recent API version with which the application is compliant. The high-order word
represents the major version number, and the low-order word represents the minor version number.

lpdwAPIVersion

A pointer to a DWORD in which the API version number that was negotiated will be returned. If
negotiation succeeds, this number ranges from dwAPILowVersion to dwAPIHighVersion.

lpExtensionID

A pointer to a structure of type PHONEEXTENSIONID. If the service provider for the specified
dwDeviceID parameter supports provider-specific extensions, this structure gets filled with the
extension identifier of these extensions when negotiation succeeds. This structure contains all zeros
if the line provides no extensions. An application can ignore the returned parameter if it does not
use extensions.

Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values
follow:

PHONEERR_INVALAPPHANDLE

PHONEERR_OPERATIONFAILED

PHONEERR_BADDEVICEID

PHONEERR_OPERATIONUNAVAIL
5-130
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Phone Functions
PHONEERR_NODRIVER

PHONEERR_NOMEM

PHONEERR_INVALPOINTER

PHONEERR_RESOURCEUNAVAIL,PHONEERR_INCOMPATIBLEAPIVERSION

PHONEERR_UNINITIALIZED

PHONEERR_NODEVICE

phoneOpen
The phoneOpen function opens the specified phone device. Open the device by using either owner
privilege or monitor privilege. An application that opens the phone with owner privilege can control the
lamps, display, ringer, and hookswitch or hookswitches that belong to the phone. An application that
opens the phone device with monitor privilege receives notification only about events that occur at the
phone, such as hookswitch changes or button presses. Because ownership of a phone device is exclusive,
only one application at a time can have a phone device opened with owner privilege. The phone device
can, however, be opened multiple times with monitor privilege.

Note To open a phone device on a CTI port, first ensure a corresponding line device is open.

Function Details

LONG phoneOpen(
 HPHONEAPP hPhoneApp,
 DWORD dwDeviceID,
 LPHPHONE lphPhone,
 DWORD dwAPIVersion,
 DWORD dwExtVersion,
 DWORD dwCallbackInstance,
 DWORD dwPrivilege
);

Parameters

hPhoneApp

A handle by which the application is registered with TAPI.

dwDeviceID

The phone device to be opened.

lphPhone

A pointer to an HPHONE handle that identifies the open phone device. Use this handle to identify
the device when invoking other phone control functions.

dwAPIVersion

The API version number under which the application and telephony API agreed to operate. Obtain
this number from phoneNegotiateAPIVersion.
5-131
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Phone Functions
dwExtVersion

The extension version number under which the application and the service provider agree to operate.
This number is zero if the application does not use any extensions. Obtain this number from
phoneNegotiateExtVersion.

Note The Cisco Unified TSP does not support any phone extensions.

dwCallbackInstance

User instance data that is passed back to the application with each message. The telephony API does
not interpret this parameter.

dwPrivilege

The privilege requested. The dwPrivilege parameter can have only one bit set. This parameter uses
the following PHONEPRIVILEGE_ constants:

 – PHONEPRIVILEGE_MONITOR - An application that opens a phone device with this privilege
gets informed about events and state changes that occur on the phone. The application cannot
invoke any operations on the phone device that would change its state.

 – PHONEPRIVILEGE_OWNER - An application that opens a phone device in this mode can
change the state of the lamps, ringer, display, and hookswitch devices of the phone. Having
owner privilege to a phone device automatically includes monitor privilege as well.

phoneSetDisplay
The phoneSetDisplay function causes the specified string to display on the specified open phone device.

Note Prior to Release 4.0, Cisco Unified Communications Manager messages that were passed to the phone
would automatically overwrite any messages sent to the phone by using phoneSetDisplay(). In Cisco
Unified Communications Manager 4.0, the message sent to the phone in the phoneSetDisplay() API
remains on the phone until the phone is rebooted. If the application wants to clear the text from the
display and see the Cisco Unified Communications Manager messages again, a NULL string, not spaces,
should be passed in the phoneSetDisplay() API. In other words, the lpsDisplay parameter should be
NULL and the dwSize should be set to 0.

Function Details

LONG phoneSetDisplay(
 HPHONE hPhone,
 DWORD dwRow,
 DWORD dwColumn,
 LPCSTR lpsDisplay,
 DWORD dwSize
);

Parameters

hPhone

A handle to the open phone device. The application must be the owner of the phone.
5-132
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Phone Functions
dwRow

The row position on the display where the new text displays.

dwColumn

The column position on the display where the new text displays.

lpsDisplay

A pointer to the memory location where the display content is stored. The display information must
follow the format that is specified in the dwStringFormat member of the device capabilities for this
phone.

dwSize

The size in bytes of the information to which lpsDisplay points.

phoneSetLamp
The phoneSetLamp function causes the specified lamp to glow on the open phone device in the specified
lamp mode.

Function Details

LONG phoneSetLamp(
 HPHONE hPhone,
 DWORD dwButtonLampID,
 DWORD dwLampMode
);

Parameters

hPhone

A handle to the open phone device. Ensure that the application is the owner of the phone.

dwButtonLampID

The button that glows. See “Phone Button Values” Table 5-7 for lamp IDs.

dwLampMode

Note Cisco Unified IP Phones 79xx series does not support this function.

Indicates how the lamp must glow. The dwLampMode parameter can have only a single bit set. This
parameter uses the following PHONELAMPMODE_ constants:

 – PHONELAMPMODE_FLASH - Flash means slow on and off.

 – PHONELAMPMODE_FLUTTER - Flutter means fast on and off.

 – PHONELAMPMODE_OFF - The lamp is off.

 – PHONELAMPMODE_STEADY - The lamp is continuously on.

 – PHONELAMPMODE_WINK - The lamp blinks.

 – PHONELAMPMODE_DUMMY - This value describes a button/lamp position that has no
corresponding lamp.
5-133
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Phone Functions
phoneSetStatusMessages
The phoneSetStatusMessages function enables an application to monitor the specified phone device for
selected status events.

See “TAPI Phone Messages” for supported messages.

Function Details

LONG phoneSetStatusMessages(
 HPHONE hPhone,
 DWORD dwPhoneStates,
 DWORD dwButtonModes,
 DWORD dwButtonStates
);

Parameters

hPhone

A handle to the open phone device to be monitored.

dwPhoneStates

These flags specify the set of phone status changes and events for which the application can receive
notification messages. This parameter can have zero, one, or more bits set. This parameter uses the
following PHONESTATE_ constants:

 – PHONESTATE_OTHER - Phone status items other than those in the following list changed.
The application should check the current phone status to determine which items changed.

 – PHONESTATE_OWNER - The number of owners for the phone device changed.

 – PHONESTATE_MONITORS - The number of monitors for the phone device changed.

 – PHONESTATE_DISPLAY - The display of the phone changed.

 – PHONESTATE_LAMP - A lamp of the phone changed.

 – PHONESTATE_RINGMODE - The ring mode of the phone changed.

 – PHONESTATE_SPEAKERHOOKSWITCH - The hookswitch state changed for this
speakerphone.

 – PHONESTATE_REINIT - Items changed in the configuration of phone devices. To become
aware of these changes (as with the appearance of new phone devices), the application should
reinitialize its use of TAPI. New phoneInitialize, phoneInitializeEx, and phoneOpen requests
get denied until applications have shut down their usage of TAPI. The hDevice parameter of the
PHONE_STATE message stays NULL for this state change because it applies to any line in the
system. Because of the critical nature of PHONESTATE_REINIT, you cannot mask such
messages, so the setting of this bit gets ignored, and the messages always get delivered to the
application.

 – PHONESTATE_REMOVED - Indicates that the service provider is removing the device from
the system (most likely through user action, through a control panel or similar utility). A
PHONE_CLOSE message on the device immediately follows a PHONE_STATE message with
this value. Subsequent attempts to access the device prior to TAPI being reinitialized result in
PHONEERR_NODEVICE being returned to the application. If a service provider sends a
5-134
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Phone Functions
PHONE_STATE message that contains this value to TAPI, TAPI passes it along to applications
that negotiated TAPI version 1.4 or later; applications that negotiated a previous TAPI version
do not receive any notification.

dwButtonModes

The set of phone-button modes for which the application can receive notification messages. This
parameter can have zero, one, or more bits set. This parameter uses the following
PHONEBUTTONMODE_ constants:

 – PHONEBUTTONMODE_CALL - The button is assigned to a call appearance.

 – PHONEBUTTONMODE_FEATURE - The button is assigned to requesting features from the
switch, such as hold, conference, and transfer.

 – PHONEBUTTONMODE_KEYPAD - The button is one of the 12 keypad buttons, ‘0’ through
‘9’, ‘*’, and ‘#’.

 – PHONEBUTTONMODE_DISPLAY - The button is a “soft” button that is associated with the
phone display. A phone set can have zero or more display buttons.

dwButtonStates

The set of phone-button state changes for which the application can receive notification messages.
If the dwButtonModes parameter is zero, the system ignores dwButtonStates. If dwButtonModes
has one or more bits set, this parameter also must have at least one bit set. This parameter uses the
following PHONEBUTTONSTATE_ constants:

 – PHONEBUTTONSTATE_UP - The button is in the “up” state.

 – PHONEBUTTONSTATE_DOWN - The button is in the “down” state (pressed down).

 – PHONEBUTTONSTATE_UNKNOWN - The up or down state of the button is unknown at this
time but may become known later.

 – PHONEBUTTONSTATE_UNAVAIL - The service provider does not know the up or down
state of the button, and the state will not become known.

phoneShutdown
The phoneShutdown function shuts down the application usage of the TAPI phone abstraction.

Note If this function is called when the application has open phone devices, these devices are closed.

Function Details

LONG WINAPI phoneShutdown(
 HPHONEAPP hPhoneApp
);

Parameter

hPhoneApp

The application usage handle for TAPI.
5-135
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Phone Messages
Return Values

Returns zero if the request succeeds or a negative number if an error occurs. Possible return values
follow:

PHONEERR_INVALAPPHANDLE, PHONEERR_NOMEM, PHONEERR_UNINITIALIZED,
PHONEERR_RESOURCEUNAVAIL.

TAPI Phone Messages
Messages notify the application of asynchronous events. All messages get sent to the application through
the message notification mechanism that the application specified in lineInitializeEx. The message
always contains a handle to the relevant object (phone, line, or call), of which the application can
determine the type from the message type. Table 5-6 describes TAPI Phone messages.

Table 5-6 TAPI Phone Messages

TAPI Phone Messages

PHONE_BUTTON

PHONE_CLOSE

PHONE_CREATE

PHONE_REMOVE

PHONE_REPLY

PHONE_STATE
5-136
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Phone Messages
PHONE_BUTTON
The PHONE_BUTTON message notifies the application that button press monitoring is enabled if it has
detected a button press on the local phone.

Function Details

PHONE_BUTTON
hPhone = (HPHONE) hPhoneDevice;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) idButtonOrLamp;
dwParam2 = (DWORD) ButtonMode;
dwParam3 = (DWORD) ButtonState;

Parameters

hPhone

A handle to the phone device.

dwCallbackInstance

The callback instance that is provided when the phone device for this application is opened.

dwParam1

The button/lamp identifier of the button that was pressed. Button identifiers zero through 11 always
represent the KEYPAD buttons, with ‘0’ being button identifier zero, ‘1’ being button identifier 1
(and so on through button identifier 9), and with ‘*’ being button identifier 10, and ‘#’ being button
identifier 11. Find additional information about a button identifier with phoneGetDevCaps.

dwParam2

The button mode of the button. The button mode for each button ID gets listed as “Phone Button
Values”.

The TAPI service provider cannot detect button down or button up state changes. To conform to the
TAPI specification, two messages are sent to simulate a down state followed by an up state in
dwparam3.

This parameter uses the following PHONEBUTTONMODE_ constants:

 – PHONEBUTTONMODE_CALL - The button is assigned to a call appearance.

 – PHONEBUTTONMODE_FEATURE - The button is assigned to requesting features from the
switch, such as hold, conference, and transfer.

 – PHONEBUTTONMODE_KEYPAD - The button is one of the 12 keypad buttons, ‘0’ through
‘9’, ‘*’, and ‘#’.

 – PHONEBUTTONMODE_DISPLAY - The button is a soft button that is associated with the
phone display. A phone set can have zero or more display buttons.

dwParam3

Specifies whether this is a button-down event or a button-up event. This parameter uses the
following PHONEBUTTONSTATE_ constants:

 – PHONEBUTTONSTATE_UP - The button is in the up state.

 – PHONEBUTTONSTATE_DOWN - The button is in the down state (pressed down).
5-137
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Phone Messages
 – PHONEBUTTONSTATE_UNKNOWN - The up or down state of the button is not known at
this time and may be known later.

 – PHONEBUTTONSTATE_UNAVAIL - The service provider does not know the up or down
state of the button, and the state cannot become known at a future time.

Button ID values of zero through 11 map to the keypad buttons as defined by TAPI. Values above
11 map to line and feature buttons. The low-order part of the DWORD specifies the feature. The
high-order part of the DWORD specifies the instance number of that feature. Table 5-7 lists all
possible values for the low-order part of the DWORD that corresponds to the feature.

Use the following expression to make the button ID:

ButtonID = (instance << 16) | featureID

Table 5-7 lists the valid phone button values.

Table 5-7 Phone Button Values

Value Feature
Has
Instance Button Mode

0 Keypad button 0 No Keypad

1 Keypad button 1 No Keypad

2 Keypad button 2 No Keypad

3 Keypad button 3 No Keypad

4 Keypad button 4 No Keypad

5 Keypad button 5 No Keypad

6 Keypad button 6 No Keypad

7 Keypad button 7 No Keypad

8 Keypad button 8 No Keypad

9 Keypad button 9 No Keypad

10 Keypad button ‘*’ No Keypad

11 Keypad button ‘#’ No Keypad

12 Last Number Redial No Feature

13 Speed Dial Yes Feature

14 Hold No Feature

15 Transfer No Feature

16 Forward All (for line one) No Feature

17 Forward Busy (for line one) No Feature

18 Forward No Answer (for line one) No Feature

19 Display No Feature

20 Line Yes Call

21 Chat (for line one) No Feature

22 Whiteboard (for line one) No Feature

23 Application Sharing (for line one) No Feature

24 T120 File Transfer (for line one) No Feature
5-138
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Phone Messages
PHONE_CLOSE
The PHONE_CLOSE message gets sent when an open phone device is forcibly closed as part of resource
reclamation. The device handle is no longer valid after this message is sent.

Function Details

PHONE_CLOSE
hPhone = (HPHONE) hPhoneDevice;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) 0;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) 0;

Parameters

hPhone

A handle to the open phone device that was closed. The handle is no longer valid after this message
is sent.

dwCallbackInstance

The callback instance of the application that is provided on an open phone device.

dwParam1 is not used.

dwParam2 is not used.

dwParam3 is not used.

PHONE_CREATE
The PHONE_CREATE message gets sent to inform applications of the creation of a new phone device.

25 Video (for line one) No Feature

26 Voice Mail (for line one) No Feature

27 Answer Release No Feature

28 Auto-answer No Feature

44 Generic Custom Button 1 Yes Feature

45 Generic Custom Button 2 Yes Feature

46 Generic Custom Button 3 Yes Feature

47 Generic Custom Button 4 Yes Feature

48 Generic Custom Button 5 Yes Feature

Table 5-7 Phone Button Values (continued)

Value Feature
Has
Instance Button Mode
5-139
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Phone Messages
Note CTI Manager cluster support, extension mobility, change notification, and user addition to the directory
can generate PHONE_CREATE events.

Function Details
PHONE_CREATE
hPhone = (HPHONE) hPhoneDevice;
dwCallbackInstance = (DWORD) 0;
dwParam1 = (DWORD) idDevice;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) 0;

Parameters

hPhone is not used.

dwCallbackInstance is not used.

dwParam1

The dwDeviceID of the newly created device.

dwParam2 is not used.

dwParam3 is not used.

PHONE_REMOVE
The PHONE_REMOVE message gets sent to inform an application of the removal (deletion from the
system) of a phone device. Generally, this method is not used for temporary removals, such as extraction
of PCMCIA devices, but only for permanent removals in which the service provider would no longer
report the device, if TAPI were reinitialized.

Note CTI Manager cluster support, extension mobility, change notification, and user deletion from the
directory can generate PHONE_REMOVE events.

Function Details
PHONE_REMOVE
dwDevice = (DWORD) 0;
dwCallbackInstance = (DWORD) 0;
dwParam1 = (DWORD) dwDeviceID;
dwParam2 = (DWORD) 0;
dwParam3 = (DWORD) 0;

Parameters

dwDevice is reserved. Set to zero.

dwCallbackInstance is reserved. Set to zero.

dwParam1

Identifier of the phone device that was removed.
5-140
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Phone Messages
dwParam2 is reserved. Set to zero.

dwParam3 is reserved. Set to zero.

PHONE_REPLY
The TAPI PHONE_REPLY message gets sent to an application to report the results of function call that
completed asynchronously.

Function Details

PHONE_REPLY
hPhone = (HPHONE) 0;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) idRequest;
dwParam2 = (DWORD) Status;
dwParam3 = (DWORD) 0;

Parameters

hPhone is not used.

dwCallbackInstance

Returns the application callback instance.

dwParam1

The request identifier for which this is the reply.

dwParam2

The success or error indication. The application should cast this parameter into a LONG. Zero
indicates success; a negative number indicates an error.

dwParam3 is not used.

PHONE_STATE
TAPI sends the PHONE_STATE message to an application whenever the status of a phone device
changes.

Function Details

PHONE_STATE
hPhone = (HPHONE) hPhoneDevice;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) PhoneState;
dwParam2 = (DWORD) PhoneStateDetails;
dwParam3 = (DWORD) 0;
5-141
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Phone Messages
Parameters

hPhone

A handle to the phone device.

dwCallbackInstance

The callback instance that is provided when the phone device is opened for this application.

dwParam1

The phone state that changed. This parameter uses the following PHONESTATE_ constants:

 – PHONESTATE_OTHER - Phone-status items other than the following ones changed. The
application should check the current phone status to determine which items changed.

 – PHONESTATE_CONNECTED - The connection between the phone device and TAPI was just
made. This happens when TAPI is first invoked or when the wire that connects the phone to the
computer is plugged in while TAPI is active.

 – PHONESTATE_DISCONNECTED - The connection between the phone device and TAPI just
broke. This happens when the wire that connects the phone set to the computer is unplugged
while TAPI is active.

 – PHONESTATE_OWNER - The number of owners for the phone device changed.

 – PHONESTATE_MONITORS - The number of monitors for the phone device changed.

 – PHONESTATE_DISPLAY - The display of the phone changed.

 – PHONESTATE_LAMP - A lamp of the phone changed.

 – PHONESTATE_RINGMODE - The ring mode of the phone changed.

 – PHONESTATE_ HANDSETHOOKSWITCH - The hookswitch state changed for this
speakerphone.

 – PHONESTATE_REINIT - Items changed in the configuration of phone devices. To become
aware of these changes (as with the appearance of new phone devices), the application should
reinitialize its use of TAPI. The hDevice parameter of the PHONE_STATE message stays
NULL for this state change as it applies to any of the phones in the system.

 – PHONESTATE_REMOVED - Indicates that the device is being removed from the system by
the service provider (most likely through user action, through a control panel or similar utility).
Normally, a PHONE_CLOSE message on the device immediately follows a PHONE_STATE
message with this value. Subsequent attempts to access the device prior to TAPI being
reinitialized result in PHONEERR_NODEVICE being returned to the application. If a service
provider sends a PHONE_STATE message that contains this value to TAPI, TAPI passes it
along to applications that negotiated TAPI version 1.4 or later; applications that negotiated a
previous API version do not receive any notification.

dwParam2

Phone state-dependent information that details the status change. This parameter is not used if
multiple flags are set in dwParam1 because multiple status items get changed. The application
should invoke phoneGetStatus to obtain a complete set of information.

Parameter dwparam2 can comprise one of PHONESTATE_LAMP, PHONESTATE_DISPLAY,
PHONESTATE_HANDSETHOOKSWITCH, or PHONESTATE_RINGMODE. Because the Cisco
Unified TSP cannot differentiate among hook switches for handsets, headsets, or speaker, the
PHONESTATE_HANDSETHOOKSWITCH value always gets used for hook switches.

If dwparam2 is PHONESTATE_LAMP, dwparam2 is the button ID that the PHONE_BUTTON
message defines.
5-142
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Phone Structures
If dwParam1 is PHONESTATE_OWNER, dwParam2 contains the new number of owners.

If dwParam1 is PHONESTATE_MONITORS, dwParam2 contains the new number of monitors.

If dwParam1 is PHONESTATE_LAMP, dwParam2 contains the button/lamp identifier of the lamp
that changed.

If dwParam1 is PHONESTATE_RINGMODE, dwParam2 contains the new ring mode.

If dwParam1 is PHONESTATE_HANDSET, SPEAKER, or HEADSET, dwParam2 contains the
new hookswitch mode of that hookswitch device. This parameter uses the following
PHONEHOOKSWITCHMODE_ constants:

 – PHONEHOOKSWITCHMODE_ONHOOK - The microphone and speaker both remain on
hook for this device.

 – PHONEHOOKSWITCHMODE_MICSPEAKER - The microphone and speaker both remain
active for this device. The Cisco Unified TSP cannot distinguish among handsets, headsets, or
speakers, so this value gets sent when the device is off hook.

dwParam3

The TAPI specification specifies that dwparam3 is zero; however, the Cisco Unified TSP will send
the new lamp state to the application in dwparam3 to avoid the call to phoneGetLamp to obtain the
state when dwparam2 is PHONESTATE_LAMP.

TAPI Phone Structures
This section describes the TAPI phone structures that Cisco Unified TSP supports:

.

PHONECAPS Structure
This section lists the Cisco-set attributes for each member of the PHONECAPS structure. If the value of
a structure member is device, line, or call specific, the list gives the value for each condition.

Members

dwProviderInfoSize

dwProviderInfoOffset

"Cisco Unified TSPxxx.TSP: Cisco IP PBX Service Provider Ver. X.X(x.x)" where the text before
the colon specifies the file name of the TSP, and the text after "Ver. " specifies the version of the
TSP.

Table 5-8 TAPI Phone Structures

TAPI Phone Structure

PHONECAPS Structure

PHONEINITIALIZEEXPARAMS

PHONEMESSAGE

PHONESTATUS

VARSTRING
5-143
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Phone Structures
dwPhoneInfoSize

dwPhoneInfoOffset

 "DeviceType:[type]" where type specifies the device type that is specified in the Cisco Unified
Communications Manager database.

dwPermanentPhoneID

dwPhoneNameSize

dwPhoneNameOffset

"Cisco Phone: [deviceName]" where deviceName specifies the name of the device in the Cisco
Unified Communications Manager database.

dwStringFormat

STRINGFORMAT_ASCII

dwPhoneStates

PHONESTATE_OWNER |

PHONESTATE_MONITORS |

PHONESTATE_DISPLAY | (Not set for CTI Route Points)

PHONESTATE_LAMP | (Not set for CTI Route Points)

PHONESTATE_RESUME |

PHONESTATE_REINIT |

PHONESTATE_SUSPEND

dwHookSwitchDevs

PHONEHOOKSWITCHDEV_HANDSET (Not set for CTI Route Points)

dwHandsetHookSwitchModes

PHONEHOOKSWITCHMODE_ONHOOK | (Not set for CTI Route Points)

PHONEHOOKSWITCHMODE_MICSPEAKER | (Not set for CTI Route Points)

PHONEHOOKSWITCHMODE_UNKNOWN (Not set for CTI Route Points)

dwDisplayNumRows (Not set for CTI Route Points)

1

dwDisplayNumColumns

20 (Not set for CTI Route Points)

dwNumRingModes

3 (Not set for CTI Route Points)

dwPhoneFeatures (Not set for CTI Route Points)

PHONEFEATURE_GETDISPLAY |

PHONEFEATURE_GETLAMP |

PHONEFEATURE_GETRING |

PHONEFEATURE_SETDISPLAY |

PHONEFEATURE_SETLAMP

dwMonitoredHandsetHookSwitchModes
5-144
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Phone Structures
PHONEHOOKSWITCHMODE_ONHOOK | (Not set for CTI Route Points)

PHONEHOOKSWITCHMODE_MICSPEAKER (Not set for CTI Route Points)

PHONEINITIALIZEEXPARAMS
The PHONEINITIALIZEEXPARAMS structure contains parameters that are used to establish the
association between an application and TAPI; for example, the application selected event notification
mechanism. The phoneInitializeEx function uses this structure.

Structure Details

typedef struct phoneinitializeexparams_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;
 DWORD dwOptions;
 union
 {
 HANDLE hEvent;
 HANDLE hCompletionPort;
 } Handles;
 DWORD dwCompletionKey;
} PHONEINITIALIZEEXPARAMS, FAR *LPPHONEINITIALIZEEXPARAMS;

Members

dwTotalSize

The total size, in bytes, that is allocated to this data structure.

dwNeededSize

The size, in bytes, for this data structure that is needed to hold all the returned information.

dwUsedSize

The size, in bytes, of the portion of this data structure that contains useful information.

dwOptions

One of the PHONEINITIALIZEEXOPTION_ Constants. Specifies the event notification
mechanism that the application wants to use.

hEvent

If dwOptions specifies PHONEINITIALIZEEXOPTION_USEEVENT, TAPI returns the event
handle in this member.

hCompletionPort

If dwOptions specifies PHONEINITIALIZEEXOPTION_USECOMPLETIONPORT, the
application must specify, in this member, the handle of an existing completion port that is opened
by using CreateIoCompletionPort.

dwCompletionKey

If dwOptions specifies PHONEINITIALIZEEXOPTION_USECOMPLETIONPORT, the
application must specify in this field a value that is returned through the lpCompletionKey
parameter of GetQueuedCompletionStatus to identify the completion message as a telephony
message.
5-145
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Phone Structures
PHONEMESSAGE
The PHONEMESSAGE structure contains the next message that is queued for delivery to the
application. The phoneGetMessage function returns the following structure.

Structure Details

typedef struct phonemessage_tag {
 DWORD hDevice;
 DWORD dwMessageID;
 DWORD_PTR dwCallbackInstance;
 DWORD_PTR dwParam1;
 DWORD_PTR dwParam2;
 DWORD_PTR dwParam3;
} PHONEMESSAGE, FAR *LPPHONEMESSAGE;

Members

hDevice

A handle to a phone device.

dwMessageID

A phone message.

dwCallbackInstance

Instance data that is passed back to the application, which the application specified in
phoneInitializeEx. TAPI does not interpret DWORD.

dwParam1

A parameter for the message.

dwParam2

A parameter for the message.

dwParam3

A parameter for the message.

Further Details

For details on the parameter values that are passed in this structure, see “TAPI Phone Messages.”

PHONESTATUS
The PHONESTATUS structure describes the current status of a phone device. The phoneGetStatus and
TSPI_phoneGetStatus functions return this structure.

Device-specific extensions should use the DevSpecific (dwDevSpecificSize and dwDevSpecificOffset)
variably sized area of this data structure.

Note The dwPhoneFeatures member is available only to applications that open the phone device with an API
version of 2.0 or later.
5-146
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Phone Structures
Structure Details

typedef struct phonestatus_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;
 DWORD dwStatusFlags;
 DWORD dwNumOwners;
 DWORD dwNumMonitors;
 DWORD dwRingMode;
 DWORD dwRingVolume;
 DWORD dwHandsetHookSwitchMode;
 DWORD dwHandsetVolume;
 DWORD dwHandsetGain;
 DWORD dwSpeakerHookSwitchMode;
 DWORD dwSpeakerVolume;
 DWORD dwSpeakerGain;
 DWORD dwHeadsetHookSwitchMode;
 DWORD dwHeadsetVolume;
 DWORD dwHeadsetGain;
 DWORD dwDisplaySize;
 DWORD dwDisplayOffset;
 DWORD dwLampModesSize;
 DWORD dwLampModesOffset;
 DWORD dwOwnerNameSize;
 DWORD dwOwnerNameOffset;
 DWORD dwDevSpecificSize;
 DWORD dwDevSpecificOffset;

DWORD dwPhoneFeatures;
} PHONESTATUS, FAR *LPPHONESTATUS;

Members

dwTotalSize

The total size, in bytes, that is allocated to this data structure.

dwNeededSize

The size, in bytes, for this data structure that is needed to hold all the returned information.

dwUsedSize

The size, in bytes, of the portion of this data structure that contains useful information.

dwStatusFlags

Provides a set of status flags for this phone device. This member uses one of the
PHONESTATUSFLAGS_ Constants.

dwNumOwners

The number of application modules with owner privilege for the phone.

dwNumMonitors

The number of application modules with monitor privilege for the phone.

dwRingMode

The current ring mode of a phone device.

dwRingVolume

0x8000
5-147
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Phone Structures
dwHandsetHookSwitchMode

The current hookswitch mode of the phone handset. PHONEHOOKSWITCHMODE_UNKNOWN

dwHandsetVolume

0

dwHandsetGain

0

dwSpeakerHookSwitchMode

The current hookswitch mode of the phone speakerphone.
PHONEHOOKSWITCHMODE_UNKNOWN

dwSpeakerVolume

0

dwSpeakerGain

0

dwHeadsetHookSwitchMode

The current hookswitch mode of the phone's headset. PHONEHOOKSWITCHMODE_UNKNOWN

dwHeadsetVolume

0

dwHeadsetGain

0

dwDisplaySize

dwDisplayOffset

0

dwLampModesSize

dwLampModesOffset

0

dwOwnerNameSize

dwOwnerNameOffset

The size, in bytes, of the variably sized field that contains the name of the application that is the
current owner of the phone device and the offset, in bytes, from the beginning of this data structure.
The name is the application name that the application provides when it invokes with phoneInitialize
or phoneInitializeEx. If no application name was supplied, the application's filename is used instead.
If the phone currently has no owner, dwOwnerNameSize is zero.

dwDevSpecificSize

dwDevSpecificOffset

Application can send XSI data to phone by using DeviceDataPassThrough device-specific
extension. Phone can pass back data to Application. The data is returned as part of this field. The
format of the data is as follows:

struct PhoneDevSpecificData

{
 DWORD m_DeviceDataSize ; // size of device data
5-148
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
TAPI Phone Structures
 DWORD m_DeviceDataOffset ; // offset from PHONESTATUS
structure

 // this will follow the actual variable length device data.
}

dwPhoneFeatures

The application negotiates an extension version >= 0x00020000. The following features are supported:

 • PHONEFEATURE_GETDISPLAY

 • PHONEFEATURE_GETLAMP

 • PHONEFEATURE_GETRING

 • PHONEFEATURE_SETDISPLAY

 • PHONEFEATURE_SETLAMP

VARSTRING
The VARSTRING structure returns variably sized strings. The line device class and the phone device
class both use it.

Note No extensibility exists with VARSTRING.

Structure Details

typedef struct varstring_tag {
 DWORD dwTotalSize;
 DWORD dwNeededSize;
 DWORD dwUsedSize;
 DWORD dwStringFormat;
 DWORD dwStringSize;
 DWORD dwStringOffset;
} VARSTRING, FAR *LPVARSTRING;

Members

dwTotalSize

The total size, in bytes, that is allocated to this data structure.

dwNeededSize

The size, in bytes, for this data structure that is needed to hold all the returned information.

dwUsedSize

The size, in bytes, of the portion of this data structure that contains useful information.

dwStringFormat

The format of the string. This member uses one of the STRINGFORMAT_ Constants.

dwStringSize

dwStringOffset

The size, in bytes, of the variably sized device field that contains the string information and the
offset, in bytes, from the beginning of this data structure.
5-149
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
Wave Functions
If a string cannot be returned in a variable structure, the dwStringSize and dwStringOffset members
get set in one of the following ways:

dwStringSize and dwStringOffset members both get set to zero.

dwStringOffset gets set to nonzero and dwStringSize gets set to zero.

dwStringOffset gets set to nonzero, dwStringSize gets set to 1, and the byte at the given offset
gets set to zero.]

Wave Functions
The AVAudio32.dll implements the wave interfaces to the Cisco wave drivers. The system supports all
APIs for input and output waveform devices.

.

waveInAddBuffer
The waveInAddBuffer function sends an input buffer to the given waveform-audio input device. When
the buffer is filled, the application receives notification.

Table 5-9 Wave Functions

Wave Functions

waveInAddBuffer

waveInClose

waveInGetID

waveInGetPosition

waveInOpen

waveInPrepareHeader

waveInReset

waveInStart

waveInUnprepareHeader

waveOutClose

waveOutPrepareHeader

waveOutGetDevCaps

waveOutGetID

waveOutGetPosition

waveOutOpen

waveOutPrepareHeader

waveOutReset

waveOutUnprepareHeader

waveOutWrite
5-150
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
Wave Functions
Function Details

MMRESULT waveInAddBuffer(
 HWAVEIN hwi,
 LPWAVEHDR pwh,
 UINT cbwh
);

Parameters

hwi

Handle of the waveform-audio input device.

pwh

Address of a WAVEHDR structure that identifies the buffer.

cbwh

Size, in bytes, of the WAVEHDR structure.

waveInClose
The waveInClose function closes the given waveform-audio input device.

Function Details

MMRESULT waveInClose(
 HWAVEIN hwi
);

Parameter

hwi

Handle of the waveform-audio input device. If the function succeeds, the handle no longer remains
valid after this call.

waveInGetID
The waveInGetID function gets the device identifier for the given waveform-audio input device.

This function gets supported for backward compatibility. New applications can cast a handle of the
device rather than retrieving the device identifier.

Function Details

MMRESULT waveInGetID(
 HWAVEIN hwi,
 LPUINT puDeviceID
);
5-151
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
Wave Functions
Parameters

hwi

Handle of the waveform-audio input device.

puDeviceID

Address of a variable to be filled with the device identifier.

waveInGetPosition
The waveInGetPosition function retrieves the current input position of the given waveform-audio input
device.

Function Details

MMRESULT waveInGetPosition(
 HWAVEIN hwi,
 LPMMTIME pmmt,
 UINT cbmmt
);

Parameters

hwi

Handle of the waveform-audio input device.

pmmt

Address of the MMTIME structure.

cbmmt

Size, in bytes, of the MMTIME structure.

waveInOpen
The waveInOpen function opens the given waveform-audio input device for recording.

Function Details
MMRESULT waveInOpen(
 LPHWAVEIN phwi,
 UINT uDeviceID,
 LPWAVEFORMATEX pwfx,
 DWORD dwCallback,
 DWORD dwCallbackInstance,
 DWORD fdwOpen
);

Parameters

phwi
5-152
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
Wave Functions
Address that is filled with a handle that identifies the open waveform-audio input device. Use this
handle to identify the device when calling other waveform-audio input functions. This parameter can
be NULL if WAVE_FORMAT_QUERY is specified for fdwOpen.HDR structure.

uDeviceID

Identifier of the waveform-audio input device to open. It can be either a device identifier or a handle
of an open waveform-audio input device. You can use the following flag instead of a device
identifier:

WAVE_MAPPER - The function selects a waveform-audio input device that is capable of recording
in the specified format.

pwfx

Address of a WAVEFORMATEX structure that identifies the desired format for recording
waveform-audio data. You can free this structure immediately after waveInOpen returns.

Note The formats that the TAPI Wave Driver supports include a 16-bit PCM at 8000 Hz, 8-bit
mulaw at 8000 Hz, and 8-bit alaw at 8000 Hz.

dwCallback

Address of a fixed callback function, an event handle, a handle to a window, or the identifier of a
thread to be called during waveform-audio recording to process messages that are related to the
progress of recording. If no callback function is required, this value can specify zero. For more
information on the callback function, see waveInProc in the TAPI API.

dwCallbackInstance

User-instance data that is passed to the callback mechanism. This parameter is not used with the
window callback mechanism.

fdwOpen

Flags for opening the device. The following values definitions apply:

 – CALLBACK_EVENT - The dwCallback parameter specifies an event handle.

 – CALLBACK_FUNCTION - The dwCallback parameter specifies a callback procedure address.

 – CALLBACK_NULL - No callback mechanism. This represents the default setting.

 – CALLBACK_THREAD - The dwCallback parameter specifies a thread identifier.

 – CALLBACK_WINDOW - The dwCallback parameter specifies a window handle.

 – WAVE_FORMAT_DIRECT - If this flag is specified, the A driver does not perform conversions
on the audio data.

 – WAVE_FORMAT_QUERY - The function queries the device to determine whether it supports
the given format, but it does not open the device.

 – WAVE_MAPPED - The uDeviceID parameter specifies a waveform-audio device to which the
wave mapper maps.

waveInPrepareHeader
The waveInPrepareHeader function prepares a buffer for waveform-audio input.
5-153
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
Wave Functions
Function Details

MMRESULT waveInPrepareHeader(
 HWAVEIN hwi,
 LPWAVEHDR pwh,
 UINT cbwh
);

Parameters

hwi

Handle of the waveform-audio input device.

pwh

Address of a WAVEHDR structure that identifies the buffer to be prepared.

cbwh

Size, in bytes, of the WAVEHDR structure.

waveInReset
The waveInReset function stops input on the given waveform-audio input device and resets the current
position to zero. All pending buffers get marked as done and get returned to the application.

Function Details

MMRESULT waveInReset(
 HWAVEIN hwi
);

Parameter

hwi

Handle of the waveform-audio input device.

waveInStart
The waveInStart function starts input on the given waveform-audio input device.

Function Details

MMRESULT waveInStart(
 HWAVEIN hwi
);

Parameter

hwi

Handle of the waveform-audio input device.
5-154
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
Wave Functions
waveInUnprepareHeader
The waveInUnprepareHeader function cleans up the preparation that the waveInPrepareHeader function
performs. This function must be called after the device driver fills a buffer and returns it to the
application. You must call this function before freeing the buffer.

Function Details

MMRESULT waveInUnprepareHeader(
 HWAVEIN hwi,
 LPWAVEHDR pwh,
 UINT cbwh
);

Parameters

hwi

Handle of the waveform-audio input device.

pwh

Address of a WAVEHDR structure that identifies the buffer to be cleaned up.

cbwh

Size, in bytes, of the WAVEHDR structure.

waveOutClose
The waveOutClose function closes the given waveform-audio output device.

Function Details

MMRESULT waveOutClose(
 HWAVEOUT hwo
);

Parameter

hwo

Handle of the waveform-audio output device. If the function succeeds, the handle no longer remains
valid after this call.

waveOutGetDevCaps
The waveOutGetDevCaps function retrieves the capabilities of a given waveform-audio output device.

Function Details

MMRESULT waveOutGetDevCaps(
5-155
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
Wave Functions
 UINT uDeviceID,
 LPWAVEOUTCAPS pwoc,
 UINT cbwoc
);

Parameters

uDeviceID

Identifier of the waveform-audio output device. It can be either a device identifier or a handle of an
open waveform-audio output device.

pwoc

Address of a WAVEOUTCAPS structure that is to be filled with information about the capabilities
of the device.

cbwoc

Size, in bytes, of the WAVEOUTCAPS structure.

waveOutGetID
The waveOutGetID function retrieves the device identifier for the given waveform-audio output device.

This function gets supported for backward compatibility. New applications can cast a handle of the
device rather than retrieving the device identifier.

Function Details

MMRESULT waveOutGetID(
 HWAVEOUT hwo,
 LPUINT puDeviceID
);

Parameters

hwo

Handle of the waveform-audio output device.

puDeviceID

Address of a variable to be filled with the device identifier.

waveOutGetPosition
The waveOutGetPosition function retrieves the current playback position of the given waveform-audio
output device.

Function Details

MMRESULT waveOutGetPosition(
 HWAVEOUT hwo,
 LPMMTIME pmmt,
 UINT cbmmt
5-156
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
Wave Functions
);

Parameters

hwo

Handle of the waveform-audio output device.

pmmt

Address of an MMTIME structure.

cbmmt

Size, in bytes, of the MMTIME structure.

waveOutOpen
The waveOutOpen function opens the given waveform-audio output device for playback.

Function Details

MMRESULT waveOutOpen(
 LPHWAVEOUT phwo,
 UINT uDeviceID,
 LPWAVEFORMATEX pwfx,
 DWORD dwCallback,
 DWORD dwCallbackInstance,
 DWORD fdwOpen
);

Parameters

phwo

Address that is filled with a handle that identifies the open waveform-audio output device. Use the
handle to identify the device when other waveform-audio output functions are called. This
parameter might be NULL if the WAVE_FORMAT_QUERY flag is specified for fdwOpen.

uDeviceID

Identifier of the waveform-audio output device to open. It can be either a device identifier or a
handle of an open waveform-audio input device. You can use the following flag instead of a device
identifier:

WAVE_MAPPER - The function selects a waveform-audio output device that is capable of playing
the given format.

pwfx

Address of a WAVEFORMATEX structure that identifies the format of the waveform-audio data to
be sent to the device. You can free this structure immediately after passing it to waveOutOpen.

Note The formats that the TAPI Wave Driver supports include 16-bit PCM at 8000 Hz, 8-bit
mulaw at 8000 Hz, and 8-bit alaw at 8000 Hz.

dwCallback
5-157
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
Wave Functions
Address of a fixed callback function, an event handle, a handle to a window, or the identifier of a
thread to be called during waveform-audio playback to process messages that are related to the
progress of the playback. If no callback function is required, this value can specify zero. For more
information on the callback function, see waveOutProc in the TAPI API.

dwCallbackInstance

User-instance data that is passed to the callback mechanism. This parameter is not used with the
window callback mechanism.

fdwOpen

Flags for opening the device. The following value definitions apply:

 – CALLBACK_EVENT - The dwCallback parameter represents an event handle.

 – CALLBACK_FUNCTION - The dwCallback parameter specifies a callback procedure address.

 – CALLBACK_NULL - No callback mechanism. This value specifies the default setting.

 – CALLBACK_THREAD - The dwCallback parameter represents a thread identifier.

 – CALLBACK_WINDOW - The dwCallback parameter specifies a window handle.

 – WAVE_ALLOWSYNC - If this flag is specified, a synchronous waveform-audio device can be
opened. If this flag is not specified while a synchronous driver is opened, the device will fail to
open.

 – WAVE_FORMAT_DIRECT - If this flag is specified, the ACM driver does not perform
conversions on the audio data.

 – WAVE_FORMAT_QUERY - If this flag is specified, waveOutOpen queries the device to
determine whether it supports the given format, but the device does not actually open.

 – WAVE_MAPPED - If this flag is specified, the uDeviceID parameter specifies a
waveform-audio device to which the wave mapper maps.

waveOutPrepareHeader
The waveOutPrepareHeader function prepares a waveform-audio data block for playback.

Function Details

MMRESULT waveOutPrepareHeader(
 HWAVEOUT hwo,
 LPWAVEHDR pwh,
 UINT cbwh
);

Parameters

hwo

Handle of the waveform-audio output device.

pwh

Address of a WAVEHDR structure that identifies the data block to be prepared.

cbwh

Size, in bytes, of the WAVEHDR structure.
5-158
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
Wave Functions
waveOutReset
The waveOutReset function stops playback on the given waveform-audio output device and resets the
current position to zero. All pending playback buffers get marked as done and get returned to the
application.

Function Details

MMRESULT waveOutReset(
 HWAVEOUT hwo
);

Parameter

hwo

Handle of the waveform-audio output device.

waveOutUnprepareHeader
The waveOutUnprepareHeader function cleans up the preparation that the waveOUtPrepareHeader
function performs. Ensure this function is called after the device driver is finished with a data block. You
must call this function before freeing the buffer.

Function Details

MMRESULT waveOutUnprepareHeader(
 HWAVEOUT hwo,
 LPWAVEHDR pwh,
 UINT cbwh
);

Parameters

hwo

Handle of the waveform-audio output device.

pwh

Address of a WAVEHDR structure that identifies the data block to be cleaned up.

cbwh

Size, in bytes, of the WAVEHDR structure.

waveOutWrite
The waveOutWrite function sends a data block to the given waveform-audio output device.
5-159
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 5 Basic TAPI Implementation
Wave Functions
Function Details

MMRESULT waveOutWrite(
 HWAVEOUT hwo,
 LPWAVEHDR pwh,
 UINT cbwh
);

Parameters

hwo

Handle of the waveform-audio output device.

pwh

Address of a WAVEHDR structure that contains information about the data block.

cbwh

Size, in bytes, of the WAVEHDR structure.
5-160
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

TAPI Developer Guide for Cisc
OL-18532-01
C H A P T E R 6

Cisco Device-Specific Extensions

This chapter describes the Cisco device-specific TAPI extensions. CiscoLineDevSpecific and the
CCiscoPhoneDevSpecific class represent the parent class. This chapter describes how to invoke the
Cisco device-specific TAPI extensions with the lineDevSpecific function. It also describes a set of
classes that you can use when you call phoneDevSpecific. It contains the following sections:

 • Cisco Line Device Specific Extensions, page 6-1

 • Cisco Line Device Feature Extensions, page 6-49

 • Cisco Phone Device-Specific Extensions, page 6-53

 • Messages, page 6-58

Cisco Line Device Specific Extensions
Table 6-1 lists the subclasses of Cisco Line Device-Specific Extensions. This section contains all of the
extensions in the table and descriptions of the following data structures:

 • LINEDEVCAPS, page 6-3

 • LINECALLINFO, page 6-6

 • LINEDEVSTATUS, page 6-14

Table 6-1 Cisco Line Device-Specific Extensions

Cisco Functions Synopsis

CCiscoLineDevSpecific The CCiscoLineDevSpecific class specifies the parent class to the
following classes.

Message Waiting The CCiscoLineDevSpecificMsgWaiting class turns the message
waiting lamp on or off for the line that the hLine parameter specifies.

Message Waiting Dirn The CCiscoLineDevSpecificMsgWaiting class turns the message
waiting lamp on or off for the line that a parameter specifies and remains
independent of the hLine parameter.

Audio Stream Control The CCiscoLineDevSpecificUserControlRTPStream class controls the
audio stream for a line.

Set Status Messages The CCiscoLineDevSpecificSetStatusMsgs class controls the reporting
of certain line device specific messages for a line. The application
receives LINE_DEVSPECIFIC messages to signal when to stop and
start streaming RTP audio.
6-1
o Unified Communications Manager Release 7.1(2)

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
Swap-Hold/SetupTransfer Cisco Unified TSP 4.0 and later do not support this function.
The CCiscoLineDevSpecificSwapHoldSetupTransfer class performs a
setupTransfer between a call that is in CONNECTED state and a call
that is in ONHOLD state. This function will change the state of the
connected call to ONHOLDPENDTRANSFER state and the ONHOLD
call to CONNECTED state. This action will then allow a
completeTransfer to be performed on the two calls.

Redirect Reset Original
Called ID

The CCiscoLineDevSpecificRedirectResetOrigCalled class gets used to
redirect a call to another party while resetting the original called ID of
the call to the destination of the redirect.

Port Registration per Call The CciscoLineDevSpecificPortRegistrationPerCall class gets used to
register a CTI port or route point for the Dynamic Port Registration
feature, which allows applications to specify the IP address and UDP
port number on a call-by-call basis.

Setting RTP Parameters for
Call

The CciscoLineDevSpecificSetRTPParamsForCall class sets the IP
address and UDP port number for the specified call.

Redirect Set Original Called
ID

Use the CciscoLineDevSpecificSetOrigCalled class to redirect a call to
another party while setting the original called ID of the call to any other
party.

Join Use the CciscoLineDevSpecificJoin class to join two or more calls into
one conference call.

Set User SRTP Algorithm
IDs

Use the CciscoLineDevSpecificUserSetSRTPAlgorithmID class to
allow application to set SRTP algorithm IDs. You should use this class
after lineopen and before
CCiscoLineDevSpecificSetRTPParamsForCall or
CCiscoLineDevSpecificUserControlRTPStream

Explicit Acquire Use the CciscoLineDevSpecificAcquire class to explicitly acquire any
CTI Controllable device in the Cisco Unified Communications Manager
system, which needs to be opened in Super Provider mode.

Explicit De-Acquire Use the CciscoLineDevSpecificDeacquire class to explicitly de-acquire
any CTI controllable device in the Cisco Unified Communications
Manager system.

Redirect FAC CMC Use the CCiscoLineDevSpecificRedirectFACCMC class to redirect a
call to another party while including a FAC, CMC, or both.

Blind Transfer FAC CMC Use the CCiscoLineDevSpecificBlindTransferFACCMC class to blind
transfer a call to another party while including a FAC, CMC, or both.

CTI Port Third Party
Monitor

Use the CCiscoLineDevSpecificCTIPortThirdPartyMonitor class to
open a CTI port in third-party mode.

Send Line Open Use the CciscoLineDevSpecificSendLineOpen class to trigger actual
line open from TSP side. Use this for delayed open mechanism.

Start Call Monitoring Use CCiscoLineDevSpecificStartCallMonitoringReq to allow
applications to send a start monitoring request for the active call on a
line.

Table 6-1 Cisco Line Device-Specific Extensions (continued)

Cisco Functions Synopsis
6-2
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
LINEDEVCAPS
Cisco TSP implements several line device-specific extensions and uses the DevSpecific
(dwDevSpecificSize and dwDevSpecificOffset) variably sized area of the LINEDEVCAPS data
structure for those extensions. The the Cisco_LineDevCaps_Ext structure in the
CiscoLineDevSpecificMsg.h header file defines the DevSpecific area layout. Cisco TSP organizes the
data in that structure based on the extension version in which the data was introduced:

// LINEDEVCAPS Dev Specific extention //
typedef struct Cisco_LineDevCaps_Ext
{
 Cisco_LineDevCaps_Ext00030000 ext30;
 Cisco_LineDevCaps_Ext00060000 ext60;
 Cisco_LineDevCaps_Ext00070000 ext70;
 Cisco_LineDevCaps_Ext00080000 ext80;
} CISCO_LINEDEVCAPS_EXT;

For a specific line device, the extension area will include a portion of this structure starting from the
beginning and up to the extension version that an application negotiated.

The individual extension version substructure definitions follow:

// LINEDEVCAPS 00030000 extention //
typedef struct Cisco_LineDevCaps_Ext00030000
{
 DWORD dwLineTypeFlags;
} CISCO_LINEDEVCAPS_EXT00030000;
// LINEDEVCAPS 00060000 extention //
typedef struct Cisco_LineDevCaps_Ext00060000
{

DWORD dwLocale;
} CISCO_LINEDEVCAPS_EXT00060000;
// LINEDEVCAPS 00070000 extention //
typedef struct Cisco_LineDevCaps_Ext00070000
{
 DWORD dwPartitionOffset;
 DWORD dwPartitionSize;
} CISCO_LINEDEVCAPS_EXT00070000;
// LINEDEVCAPS 00080000 extention //
typedef struct Cisco_LineDevCaps_Ext00080000
{
 DWORD dwLineDevCaps_DevSpecificFlags; //
LINEFEATURE_DEVSPECIFIC

Start Call Recording Use CCiscoLineDevSpecificStartCallRecordingReq to allow
applications to send a recording request for the active call on that line.

StopCall Recording Use CCiscoLineDevSpecificStopCallRecordingReq to allow
applications to stop recording a call on that line.

Set Intercom SpeedDial Use the CciscoLineDevSpecificSetIntercomSpeedDial class to allow
application to set or reset SpeedDial/Label on an intercom line.

Intercom Talk Back Use the CCiscoLineDevSpecificTalkBack class to allow application to
initiate talk back on a incoming Intercom call on an Intercom line.

Redirect with Feature
Priority

Use the CciscoLineRedirectWithFeaturePriority class to enable an
application to redirect calls with specified priority.

Table 6-1 Cisco Line Device-Specific Extensions (continued)

Cisco Functions Synopsis
6-3
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
 DWORD dwLineDevCaps_DevSpecificFeatureFlags; //
LINEFEATURE_DEVSPECIFICFEAT
 RECORD_TYPE_INFO recordTypeInfo;
 INTERCOM_SPEEDDIAL_INFO intercomSpeedDialInfo;
} CISCO_LINEDEVCAPS_EXT00080000;

See the CiscoLineDevSpecificMsg.h header file for additional information on the DevSpecific structure
layout and data.

Detail

A
typedef struct LineDevCaps_DevSpecificData
{
 DWORD m_DevSpecificFlags;
}LINEDEVCAPS_DEV_SPECIFIC_DATA;

Note Be aware that this extension is only available if extension version 3.0 (0x00030000) or higher is
negotiated.

B
typedef struct LocaleInfo
{

DWORD Locale; //This will have the locale info of the device
DWORD PartitionOffset;

DWORD PartitionSize; //This will have the partition info of the line.
} LOCALE_INFO;

Note Be aware that the Locale info is only available along with LINEDEVCAPS_DEV_SPECIFIC_DATA if
extension version 6.0 (0x00060000) or higher is negotiated.

C
typedef struct PartitionInfo
{

DWORD PartitionOffset;
DWORD PartitionSize; //This will have the partition info of the line.
} PARTITION_INFO;

Note Be aware that both the Locale and Partition Info is available along with
LINEDEVCAPS_DEV_SPECIFIC_DATA if extension version 6.1 (0x00060001) or higher is
negotiated.

Parameters

DWORD m_DevSpecificFlags

A bit array that identifies device-specific properties for the line. The bits definition follows:

LINEDEVCAPSDEVSPECIFIC_PARKDN (0x00000001)—Indicates whether this line is a Call
Park DN.
6-4
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
Note Be aware that this extension is only available if extension version 3.0 (0x00030000) or higher
is negotiated.

DWORD Locale

This entity identifies the locale information for the device. The typical values could be:

enum
{
ENGLISH_UNITED_STATES= 1,
FRENCH_FRANCE= 2,
GERMAN_GERMANY= 3,
RUSSIAN_RUSSIAN_FEDERATION= 5,
SPANISH_SPAIN= 6,
ITALIAN_ITALY= 7,
DUTCH_NETHERLANDS= 8,
NORWEGIAN_NORWAY= 9,
PORGUGUESE_PORTUGAL= 10,
SWEDISH_SWEDEN= 11,
DANISH_DENMARK= 12,
JAPANESE_JAPAN= 13,
HUNGARAIN_HUNGARY= 14,
POLISH_POLAND= 15,
GREEK_GREECE= 16,
CHINESE_TAIWAN = 19,
CHINESE_CHINA= 20,
KOREAN_KOREA_REPUBLIC= 21,
FINNISH_FINLAND= 22,
PORTUGUESE_BRAZIL= 23,
CHINESE_HONG_KONG= 24,
SLOVAK_SLOVAKIA= 25,
CZECH_CZECH_REPUBLIC= 26,
BULGARIAN_BULGARIA= 27,
CROATIAN_CROATIA= 28,
SLOVENIAN_SLOVENIA= 29,
ROMANIAN_ROMANIA= 30,
CATALAN_SPAIN= 32,
ENGLISH_UNITED_KINGDOM= 33,
ARABIC_UNITED_ARAB_EMIRATES= 35,
ARABIC_OMAN= 36,
ARABIC_SAUDI_ARABIA= 37,
ARABIC_KUWAIT= 38,
HEBREW_ISRAEL= 39,
SERBIAN_REPUBLIC_OF_SERBIA= 40,
SERBIAN_REPUBLIC_OF_MONTENEGRO= 41,
THAI_THAILAND= 42,
ARABIC_ALGERIA= 47,
ARABIC_BAHRAIN= 48,
ARABIC_EGYPT= 49,
ARABIC_IRAQ= 50,
ARABIC_JORDAN= 51,
ARABIC_LEBANON= 52,
ARABIC_MOROCCO= 53,
ARABIC_QATAR= 54,
ARABIC_TUNISIA= 55,
}

6-5
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
LINECALLINFO
Cisco TSP implements several line device-specific extensions and uses the DevSpecific
(dwDevSpecificSize and dwDevSpecificOffset) variably sized area of the LINECALLINFO data
structure for those extensions. The Cisco_LineCallInfo_Ext structure in the
CiscoLineDevSpecificMsg.h header file defines DevSpecific area layout. Cisco TSP organizes the data
in that structure based on the extension version in which the data was introduced:

// LINECALLINFO Dev Specific extention //
typedef struct Cisco_LineCallInfo_Ext
{
 Cisco_LineCallInfo_Ext00060000 ext60;
 Cisco_LineCallInfo_Ext00070000 ext70;
 Cisco_LineCallInfo_Ext00080000 ext80;
} CISCO_LINECALLINFO_EXT;

For a specific line device, the extension area includes a portion of this structure starting from the
beginning and up to the extension version that an application negotiated.

The individual extension version substructure definitions follow:

// LINECALLINFO 00060000 extention //
typedef struct Cisco_LineCallInfo_Ext00060000
{
 TSP_UNICODE_PARTY_NAMES unicodePartyNames;
} CISCO_LINECALLINFO_EXT00060000;
// LINECALLINFO 00070000 extention //
typedef struct Cisco_LineCallInfo_Ext00070000
{
 DWORD SRTPKeyInfoStructureOffset; // offset from base of LINECALLINFO
 DWORD SRTPKeyInfoStructureSize; // includes variable length data total size
 DWORD SRTPKeyInfoStructureElementCount;
 DWORD SRTPKeyInfoStructureElementFixedSize;
 DWORD DSCPInformationOffset; // offset from base of LINECALLINFO
 DWORD DSCPInformationSize; // fixed size of the DSCPInformation structure
 DWORD DSCPInformationElementCount;
 DWORD DSCPInformationElementFixedSize;
 DWORD CallPartitionInfoOffset; // offset from base of LINECALLINFO
 DWORD CallPartitionInfoSize; // fixed size of the CallPartitionInformation
structure
 DWORD CallPartitionInfoElementCount;
 DWORD CallPartitionInfoElementFixedSize;
 DWORD ExtendedCallInfoOffset; // ===> ExtendedCallInfo { }
 DWORD ExtendedCallInfoSize; //
 DWORD ExtendedCallInfoElementCount; //
 DWORD ExtendedCallInfoElementSize; //
} CISCO_LINECALLINFO_EXT00070000;
// LINEDEVCAPS 00080000 extention //
typedef struct Cisco_LineDevCaps_Ext00080000
{
 DWORD dwLineDevCaps_DevSpecificFlags; //
LINEFEATURE_DEVSPECIFIC
 DWORD dwLineDevCaps_DevSpecificFeatureFlags; //
LINEFEATURE_DEVSPECIFICFEAT
 RECORD_TYPE_INFO recordTypeInfo;
 INTERCOM_SPEEDDIAL_INFO intercomSpeedDialInfo;
} CISCO_LINEDEVCAPS_EXT00080000;
// LINECALLINFO 00080001 extension //
// ---------------------------------
typedef struct Cisco_LineCallInfo_Ext00080001
{
 DWORD CPNInfoOffset; //array of structure of CPNInfo structure
 DWORD CPNInfoSize;
6-6
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
 DWORD CPNInfoElementCount;
 DWORD CPNInfoElementFixedSize;
};

See the CiscoLineDevSpecificMsg.h header file for additional information on the DevSpecific structure
layout and data.

Details

The TSP_Unicode_Party_names structure and SRTP info structure describe the device-specific
extensions that the Cisco Unified TSP made to the LINECALLINFO structure.
DSCPValueForAudioCalls will contain the DSCP value that CTI sent in the StartTransmissionEvent.

ExtendedCallInfo structure has extra call information. For Cisco Unified Communications Manager
Release 7.0(1), the ExtendedCallReason field belongs to the ExtendedCallInfo structure.

CallAttributeInfo contains the information about attributeType (Monitoring, Monitored,
Recorder,securityStatus) and PartyInfo (Dn,Partition,DeviceName)

CCMCallID contains CCM Call identifier value.

CallingPartyIPAddress contains the IP address of the calling party if the calling party device supports it.

CallSecurityStatus structure contains the overall security status of the call for two-party call as well as
conference call.

DWORD TapiCallerPartyUnicodeNameOffset;
DWORD TapiCallerPartyUnicodeNameSize;
DWORDTapiCallerPartyLocale;

DWORD TapiCalledPartyUnicodeNameOffset;
DWORD TapiCalledPartyUnicodeNameSize;
DWORDTapiCalledPartyLocale;

DWORD TapiConnectedPartyUnicodeNameOffset;
DWORD TapiConnectedPartyUnicodeNameSize;
DWORDTapiConnectedPartyLocale;

DWORD TapiRedirectionPartyUnicodeNameOffset;
DWORD TapiRedirectionPartyUnicodeNameSize;
DWORDTapiRedirectionPartyLocale;

DWORD TapiRedirectingPartyUnicodeNameOffset;
DWORD TapiRedirectingPartyUnicodeNameSize;
DWORDTapiRedirectingPartyLocale;

DWORD SRTPKeyInfoStructureOffset; // offset from base of LINECALLINFO
DWORD SRTPKeyInfoStructureSize;// includes variable length data total size
DWORD SRTPKeyInfoStructureElementCount;
DWORD SRTPKeyInfoStructureElementFixedSize;
DWORD DSCPValueInformationOffset;
DWORD DSCPValueInformationSize;
DWORD DSCPValueInformationElementCount;
DWORD DSCPValueInformationElementFixedSize;
DWORD PartitionInformationOffset; // offset from base of LINECALLINFO
DWORD PartitionInformationSize; // includes variable length data total size
DWORD PartitionInformationElementCount;
DWORD PartitionInformationElementFixedSize;
DWORD ExtendedCallInfoOffset;
DWORD ExtendedCallInfoSize;
DWORD ExtendedCallInfoElementCount;
DWORD ExtendedCallInfoElementSize;
DWORD CallAttrtibuteInfoOffset;
6-7
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
DWORD CallAttrtibuteInfoSize;
DWORD CallAttrtibuteInfoElementCount;
DWORD CallAttrtibuteInfoElementSize;
DWORD CallingPartyIPAddress;
DWORD CCMCallIDInfoOffset;
DWORD CCMCallIDInfoSize;
DWORD CCMCallIDInfoElementCount;
DWORD CCMCallIDInfoElementFixedSize;
DWORD CallSecurityStatusOffset;
DWORD CallSecurityStatusSize;
DWORD CallSecurityStatusElementCount;
DWORD CallSecurityStatusElementFixedSize;

typedef struct SRTPKeyInfoStructure
{

SRTPKeyInformation TransmissionSRTPInfo;
SRTPKeyInformation ReceptionSRTPInfo;

} SRTPKeyInfoStructure;

typedef struct SRTPKeyInformation
{

DWORDIsSRTPDataAvailable;
DWORDSecureMediaIndicator;// CiscoSecurityIndicator
DWORDMasterKeyOffset;
DWORDMasterKeySize;
DWORDMasterSaltOffset;
DWORDMasterSaltSize;
DWORDAlgorithmID;// CiscoSRTPAlgorithmIDs
DWORDIsMKIPresent;
DWORDKeyDerivationRate;

} SRTPKeyInformation;

enum CiscoSRTPAlgorithmIDs
{

SRTP_NO_ENCRYPTION=0,
SRTP_AES_128_COUNTER=1

};

enum CiscoSecurityIndicator
{
 SRTP_MEDIA_ENCRYPT_KEYS_AVAILABLE,
 SRTP_MEDIA_ENCRYPT_USER_NOT_AUTH,
 SRTP_MEDIA_ENCRYPT_KEYS_UNAVAILABLE,
 SRTP_MEDIA_NOT_ENCRYPTED
};

If isSRTPInfoavailable is set to false, applications should ignore the rest of the information from
SRTPKeyInformation.

If MasterKeySize or MasterSlatSize is set to 0, applications should ignore the corresponding
MasterKeyOffset or MasterSaltOffset.

typedef struct DSCPValueInformation
{
DWORD DSCPValueForAudioCalls;
}

typedef struct PartitionInformation
{

DWORD CallerIDPartitionOffset;
DWORD CallerIDPartitionSize;
DWORD CalledIDPartitionOffset;
DWORD CalledIDPartitionSize;
DWORD ConnecetedIDPartitionOffset;
6-8
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
DWORD ConnecetedIDPartitionSize;
DWORD RedirectionIDPartitionOffset;
DWORD RedirectionIDPartitionSize;
DWORD RedirectingIDPartitionOffset;
DWORD RedirectingIDPartitionSize;

} PartitionInformation;

Struct ExtendedCallInfo
{

DWORD ExtendedCallReason ;
DWORD CallerIDURLOffset;// CallPartySipURLInfo
DWORD CallerIDURISize;
DWORD CalledIDURLOffset;// CallPartySipURLInfo
DWORD CalledIDURISize;
DWORD ConnectedIDURIOffset;// CallPartySipURLInfo
DWORD ConnectedIDURISize;
DWORD RedirectionIDURIOffset;// CallPartySipURLInfo
DWORD RedirectionIDURISize;
DWORD RedirectingIDURIOffset;// CallPartySipURLInfo
DWORD RedirectingIDURISize;

}

Struct CallPartySipURLInfo
{

DWORDdwUserOffset; //sip user string
DWORDdwUserSize;
DWORDdwHostOffset; //host name string
DWORDdwHostSize;
DWORDdwPort;// integer port number
DWORDdwTransportType; // SIP_TRANS_TYPE
DWORDdwURLType;// SIP_URL_TYPE

}

enum {
 CTI_SIP_TRANSPORT_TCP=1,
 CTI_SIP_TRANSPORT_UDP,
 CTI_SIP_TRANSPORT_TLS
} SIP_TRANS_TYPE;

enum {
 CTI_NO_URL = 0,
 CTI_SIP_URL,
 CTI_TEL_URL
} SIP_URL_TYPE;

typedef struct CallAttributeInfo
{

DWORD CallAttributeType,
DWORD PartyDNOffset,
DWORD PartyDNSize,
DWORD PartyPartitionOffset,
DWORD PartyPartitionSize,
DWORD DeviceNameOffset,
DWORD DeviceNameSize,
DWORD OverallCallSecurityStatus

}
typedef struct CCMCallHandleInformation
{

DWORD CCMCallID;
}

enum
{

6-9
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
enum
{
 CallAttribute_Regular = 0,
 CallAttribute_SilentMonitorCall .
 CallAttribute_SilentMonitorCall_Target ,
 CallAttribute_RecordedCall_Automatic ,
 CallAttribute_RecordedCall_AppControlled
} CallAttributeType
typedef struct CallSecurityStausInfo
{
DWORD CallSecurityStaus
} CallSecurityStausInfo
enum CallSecurityStausValue
{
CallSecurityStatus_Unknown
CallSecurityStatus_NonSecure = 0,
CallSecurityStatus_Secure
}

enum OverallCallSecurityStausValue
{
CallSecurityStatus_Unknown
CallSecurityStatus_NonSecure = 0,
CallSecurityStatus_Secure
}

};
typedef struct CPNInfo
{

DWORD CallerPartyNumberType;//refer to CiscoNumberType
DWORD CalledPartyNumberType;
DWORD ConnectedIdNumberType;
DWORD RedirectingPartyNumberType;
DWORD RedirectionPartyNumberType;

 DWORD ModifiedCallingPartySize;
DWORD ModifiedCallingPartyOffset;
DWORD ModifiedCalledPartySize;
DWORD ModifiedCalledPartyOffset;
DWORD ModifiedConnectedIdSize;
DWORD ModifiedConnectedIdOffset;
DWORD ModifiedRedirectingPartySize;
DWORD ModifiedRedirectingPartyOffset;
DWORD ModifiedRedirectionPartySize;
DWORD ModifiedRedirectionPartyOffset;
DWORD GlobalizedCallingPartySize;
DWORD GlobalizedCallingPartyOffset;

} CPNInfo;

enum CiscoNumberType {
 NumberType_Unknown = 0, // UNKNOWN_NUMBER
 NumberType_International = 1, // INTERNATIONAL_NUMBER
 NumberType_National = 2, // NATIONAL_NUMBER
 NumberType_NetSpecificNum = 3, // NET_SPECIFIC_NUMBER
 NumberType_Subscriber = 4, // SUBSCRIBER_NUMBER
 NumberType_Abbreviated = 6 // ABBREVIATED_NUMBER
};
6-10
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
Parameters

Parameter Value

TapiCallerPartyUnicodeNameOffset
TapiCallerPartyUnicodeNameSize

The size, in bytes, of the variably sized field that contains
the Unicode Caller party identifier name information, and
the offset, in bytes, from the beginning of the
LINECALLINFO data structure

TapiCallerPartyLocale The Unicode Caller party identifier name Locale
information

TapiCalledPartyUnicodeNameOffset
TapiCalledPartyUnicodeNameSize

The size, in bytes, of the variably sized field that contains
the Unicode Called party identifier name information and
the offset, in bytes, from the beginning of the
LINECALLINFO data structure

TapiCalledPartyLocale The Unicode Called party identifier name locale
information

TapiConnectedPartyUnicodeNameOffset
TapiConnectedPartyUnicodeNameSize

The size, in bytes, of the variably sized field that contains
the Unicode Connected party identifier name information
and the offset, in bytes, from the beginning of the
LINECALLINFO data structure

TapiConnectedPartyLocale The Unicode Connected party identifier name locale
information

TapiRedirectionPartyUnicodeNameOffset
TapiRedirectionPartyUnicodeNameSize

The size, in bytes, of the variably sized field that contains
the Unicode Redirection party identifier name
information and the offset, in bytes, from the beginning
of the LINECALLINFO data structure

TapiRedirectionPartyLocale The Unicode Redirection party identifier name locale
information

TapiRedirectingPartyUnicodeNameOffset
TapiRedirectingPartyUnicodeNameSize

The size, in bytes, of the variably sized field that contains
the Unicode Redirecting party identifier name
information and the offset, in bytes, from the beginning
of the LINECALLINFO data structure

TapiRedirectingPartyLocale The Unicode Redirecting party identifier name locale
information

SRTPKeyInfoStructureOffset Point to SRTPKeyInfoStructure

SRTPKeyInfoStructureSize Total size of SRTP info

SRTPKeyInfoStructureElementCount Number of SRTPKeyInfoStructure element

SRTPKeyInfoStructureElementFixedSize Fixed size of SRTPKeyInfoStructure

SecureMediaIndicator Indicates whether media is secure and whether
application is authorized for key information

MasterKeyOffset
MasterKeySize

The offset and size of SRTP MasterKey information

MasterSaltOffset
MasterSaltSize

The offset and size of SRTP MasterSaltKey information

AlgorithmID Specifies negotiated SRTP algorithm ID

IsMKIPresent Indicates whether MKI is present
6-11
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
KeyDerivationRate Provides the KeyDerivationRate

DSCPValueForAudioCalls The DSCP value for Audio Calls

CallerIDPartitionOffset
CallerIDPartitionSize

The size, in bytes, of the variably sized field that contains
the Caller party identifier partition information and the
offset, in bytes, from the beginning of LINECALLINFO
data structure

CalledIDPartitionOffset
CalledIDPartitionSize

The size, in bytes, of the variably sized field that contains
the Called party identifier partition information and the
offset, in bytes, from the beginning of LINECALLINFO
data structure

ConnectedIDPartitionOffset
ConnecetedIDPartitionSize

The size, in bytes, of the variably sized field that contains
the Connected party identifier partition information and
the offset, in bytes, from the beginning of
LINECALLINFO data structure

RedirectionIDPartitionOffset
RedirectionIDPartitionSize

The size, in bytes, of the variably sized field that contains
the Redirection party identifier partition information, and
the offset, in bytes, from the beginning of
LINECALLINFO data structure

RedirectingIDPartitionOffset
RedirectingIDPartitionSize

The size, in bytes, of the variably sized field that contains
the Redirecting party identifier partition information and
the offset, in bytes, from the beginning of
LINECALLINFO data structure

ExtendedCallReason Presents all the last feature-related CTI Call reason code
to the application as an extension to the standard reason
codes that TAPI supports. This provides the
feature-specific information per call. As phones that are
running SIP are supported through CTI, new features can
get introduced for phones that are running on SIP during
releases.

Note Be aware that this field is not backward
compatible and can change as changes or
additions are made in the SIP phone support for a
feature. Applications should implement some
default behavior to handle any unknown reason
codes that might be provided through this field.

For Refer, the reason code specified is
CtiCallReason_Refer.

For Replaces, the reason code specified is
CtiCallReason_Replaces.

CallerIDURLOffset
CallerIDURLSize

The size, in bytes, of the variably sized field that contains
the Caller party identifier URL information and the
offset, in bytes, from the beginning of LINECALLINFO
data structure

Parameter Value
6-12
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
To indicate that partition information exists in the LINECALLINFO structure, the system fires a
LINECALLINFOSTATE_DEVSPECIFIC event. The bit map indicating the change is defined as the
following:

SLDST_NUMBER_TYPE_CHANGED 0x00000080

SLDST_GLOBALIZED_CALLING_PARTY_CHANGED 0x00000100

All available bitmap values of dwParam3 for LINECALLINFOSTATE_DEVSPECIFIC event are:

SLDST_SRTP_INFO 0x00000001

SLDST_QOS_INFO 0x00000002

SLDST_PARTITION_INFO 0x00000004

CalledIDURLOffset
CalledIDURLSize

The size, in bytes, of the variably sized field that contains
the Called party identifier URL information and the
offset, in bytes, from the beginning of LINECALLINFO
data structure

ConnectedIDURLOffset
ConnecetedIDURLSize

The size, in bytes, of the variably sized field that contains
the Connected party identifier URL information and the
offset, in bytes, from the beginning of LINECALLINFO
data structure

RedirectionIDURLOffset
RedirectionIDURLSize

The size, in bytes, of the variably sized field that contains
the Redirection party identifier URL information and the
offset, in bytes, from the beginning of LINECALLINFO
data structure

RedirectingIDURLOffset
RedirectingIDURLSize

The size, in bytes, of the variably sized field that contains
the Redirecting party identifier URL information and the
offset, in bytes, from the beginning of LINECALLINFO
data structure

CallAttributeType Identifies whether the following
info(DN.Partition.DeviceName) is for a regular call, a
monitoring call, a monitored call, or a recording call

PartyDNOffset,

PartyDNSize,

The size, in bytes, of the variably sized field that contains
the Monitoring/Monitored/Recorder party DN
information and the offset, in bytes, from the beginning
of the LINECALLINFO data structure

PartyPartitionOffset

PartyPartitionSize

The size, in bytes, of the variably sized field that contains
the Monitoring/Monitored/Recorder party partition
information and the offset, in bytes, from the beginning
of the LINECALLINFO data structure

DeviceNameOffset

DeviceNameSize

The size, in bytes, of the variably sized field that contains
the Monitoring/Monitored/Recorder party device name
and the offset, in bytes, from the beginning of the
LINECALLINFO data structure

OverallCallSecurityStatus The security status of the call for two-party calls and
conference calls

CCMCallID The Cisco Unified Communications Manager caller ID
for each call leg

Parameter Value
6-13
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
SLDST_EXTENDED_CALL_INFO 0x00000008

SLDST_CALL_ATTRIBUTE_INFO 0x00000010 //M&R

SLDST_CCM_CALL_ID 0x00000020 //M&R

SLDST_SECURITY_STATUS_INFO 0x00000040 //SecureConf

SLDST_NUMBER_TYPE_CHANGED 0x00000080 //CPN

SLDST_GLOBALIZED_CALLING_PARTY_CHANGED 0x00000100 //CPN

SLDST_FAR_END_IP_ADDRESS_CHANGED 0x00000200//IPv6 new

Also, whenever a change occurs in the partition information, the system fires a LINEDEVSPECIFIC
event that indicates which exact field in the devSpecific portion of the LINECALLINFO changed as
shown below. This event fires only if the application has negotiated 7.0 extension version or higher.

LINEDEVSPECIFIC
{
 hDevice = hcall //call handle for which the info has changed.
 dwParam1 = SLDSMT_LINECALLINFO_DEVSPECIFICDATA //indicates DevSpecific portion’s changed
 dwParam2 = SLDST_SRTP_INFO | SLDST_QOS_INFO |SLDST_PARTITION_INFO |
SLDST_EXTENDED_CALL_INFO | SLDST_CALL_ATTRIBUTE_INFO|SLDST_CCM_CALLID|
SLDST_CALL_SECURITY_STATUS
 dwParam3 = …
 dwParam3 will be security indicator if dwParam2 has bit set for SLDST_SRTP_INFO
}

SLDST_SRTP_INFO = 0x00000001
SLDST_QOS_INFO = 0x00000002
SLDST_PARTITION_INFO = 0x00000004
SLDST_EXTENDED_CALL_INFO= 0x00000008
SLDST_CALL_ATTRIBUTE_INFO = 0x00000010
SLDST_CCM_CALLID = 0x00000020
SLDST_CALL_SECURITY_STATUS=0x00000040

LINEDEVSTATUS
Cisco TSP implements several line device-specific extensions and uses the DevSpecific
(dwDevSpecificSize and dwDevSpecificOffset) variably sized area of the LINEDEVSTATUS data
structure for those extensions. Cisco TSP defines the DevSpecific area layout in the
Cisco_LineDevStatus_Ext structure in the CiscoLineDevSpecificMsg.h header file. The extension
version in which the data was introduced provides basis for how the data in that structure is organized.

// LINEDEVSTATUS Dev Specific extention //
typedef struct Cisco_LineDevStatus_Ext
{
 Cisco_LineDevStatus_Ext00060000 ext60;
 Cisco_LineDevStatus_Ext00070000 ext70;
 Cisco_LineDevStatus_Ext00080000 ext80;
} CISCO_LINEDEVSTATUS_EXT;

For a specific line device, the extension area will include a portion of this structure, starting from the
beginning and up to the extension version that an application negotiated.

Detail

The individual extension version substructure definitions follow:

// LINEDEVSTATUS 00060000 extention //
typedef struct Cisco_LineDevStatus_Ext00060000
{

6-14
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
 DWORD dwSupportedEncoding;
} CISCO_LINEDEVSTATUS_EXT00060000;
// LINEDEVSTATUS 00070000 extention //
typedef struct Cisco_LineDevStatus_Ext00070000
{
 char lpszAlternateScript[MAX_ALTERNATE_SCRIPT_SIZE];
 // An empty string means there is no alternate script configured
 // or the phone does not support alternate scripts
} CISCO_LINEDEVSTATUS_EXT00070000;
// LINEDEVSTATUS 00080000 extention //
typedef struct CiscoLineDevStatus_DoNotDisturb
{
 DWORD m_LineDevStatus_DoNotDisturbOption;
 DWORD m_LineDevStatus_DoNotDisturbStatus;
} CISCOLINEDEVSTATUS_DONOTDISTURB;

You can find additional information on the DevSpecific structure layout and data in the
CiscoLineDevSpecificMsg.h header file.

The CiscoLineDevStatus_DoNotDisturb structure belongs to the
LINEDEVSTATUS_DEV_SPECIFIC_DATA structure and gets used to reflect the current state of the
Do Not Disturb feature.

Parameters

DWORD dwSupportEncoding

This parameter indicates the Support Encoding for the Unicode Party names that are being sent in
device-specific extension of the LINECALLINFO structure.

The typical values could be

enum {
UnknownEncoding = 0,// Unknown encoding
NotApplicableEncoding = 1,// Encoding not applicable to this device
AsciiEncoding = 2, // ASCII encoding
Ucs2UnicodeEncoding = 3 // UCS-2 Unicode encoding
}

Note Be aware that the dwSupportedEncoding extension is only available if extension version
0x00060000 or higher is negotiated.

LPCSTR lpszAlternateScript

This parameter specifies the alternate script that the device supports. An empty string indicates the
device does not support or is not configured with an alternate script.

The only supported script in this release is "Kanji" for the Japanese locale.

m_LineDevStatus_DoNotDisturbOption

This field contains DND option that is configured for the device and can comprise one of the
following enum values:

enum CiscoDoNotDisturbOption {
 DoNotDisturbOption_NONE = 0,
 DoNotDisturbOption_RINGEROFF = 1,
 DoNotDisturbOption_REJECT = 2
};
6-15
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
m_LineDevStatus_ DoNotDisturbStatus field contains current DND status on the device
and can be one of the following enum values:

enum CiscoDoNotDisturbStatus {
 DoNotDisturbStatus_UNKNOWN = 0,
 DoNotDisturbStatus_ENABLED = 1,
 DoNotDisturbStatus_DISABLED = 2
};

Note Be aware that this extension is only available if extension version 8.0 (0x00080000) or higher
is negotiated.

CCiscoLineDevSpecific
This section provides information on how to perform Cisco Unified TAPI specific functions with the
CCiscoLineDevSpecific class, which represents the parent class to all the following classes. It comprises
a virtual class and is provided here for informational purposes.

CCiscoLineDevSpecific
|
+-- CCiscoLineDevSpecificMsgWaiting
|
+-- CCiscoLineDevSpecificMsgWaitingDirn
|
+-- CCiscoLineDevSpecificUserControlRTPStream
|
+--CciscoLineDevSpecificSetStatusMsgs
|
+--CCiscoLineDevSpecificRedirectResetOrigCalled
|
+--CCiscoLineDevSpecificPortRegistrationPerCall
|
+--CciscoLineDevSpecificSetRTPParamsForCall
|
+--CCiscoLineDevSpecificRedirectSetOrigCalled
|
+--CCiscoLineDevSpecificJoin
|
+--CciscoLineDevSpecificUserSetSRTPAlgorithmID
|
+--CCiscoLineDevSpecificAcquire
|
+--CciscoLineDevSpecificDeacquire
|
+-- CciscoLineDevSpecificSendLineOpen
|
+-- CCiscoLineDevSpecificSetIntercomSpeedDial
|
+-- CCiscoLineDevSpecificTalkBack
|
+-- CciscoLineRedirectWithFeaturePriority
|
+--CCiscoLineDevSpecificStartCallMonitoringReq
|
+--CCiscoLineDevSpecificStartCallRecordingReq
|
+--CCiscoLineDevSpecificStopCallRecordingReq
|
+-- CciscoLineDevSpecificDirectTransfer
|

6-16
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
+-- CCiscoLineDevSpecificMsgSummary
|
+-- CCiscoLineDevSpecificMsgSummaryDirn

Header File

The file CiscoLineDevSpecific.h contains the constant, structure, and class definition for the Cisco line
device-specific classes.

Class Detail

class CCiscoLineDevSpecific
 {
 public:

CCicsoLineDevSpecific(DWORD msgType);
virtual ~CCiscoLineDevSpecific();

 DWORD GetMsgType(void) const {return m_MsgType;}
 void* lpParams() {return &m_MsgType;}
 virtual DWORD dwSize() = 0;
 private:
 DWORD m_MsgType;
 };

Functions

lpParms()

You can use function to obtain the pointer to the parameter block.

dwSize()

Function will give the size of the parameter block area.

Parameter

m_MsgType

Specifies the type of message.

Subclasses

Each subclass of CCiscoLineDevSpecific includes a different value that is assigned to the parameter
m_MsgType. If you are using C instead of C++, this represents the first parameter in the structure.

Enumeration

The CiscoLineDevSpecificType enumeration provides valid message identifiers.

enum CiscoLineDevSpecificType {
SLDST_MSG_WAITING = 1,
SLDST_MSG_WAITING_DIRN,
SLDST_USER_CRTL_OF_RTP_STREAM,
SLDST_SET_STATUS_MESSAGES,
SLDST_NUM_TYPE,
SLDST_SWAP_HOLD_SETUP_TRANSFER, // Not Supported in Cisco TSP 3.4 and Beyond
SLDST_REDIRECT_RESET_ORIG_CALLED,
6-17
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
SLDST_USER_RECEIVE_RTP_INFO,
SLDST_USER_SET_RTP_INFO,
SLDST_JOIN,
SLDST_USER_SET_SRTP_ALGORITHM_ID,
SLDST_SEND_LINE_OPEN,

};

Message Waiting
The CCiscoLineDevSpecificMsgWaiting class turns the message waiting lamp on or off for the line that
the hLine parameter specifies.

Note This extension does not require an extension version to be negotiated.

CCiscoLineDevSpecific
 |
 +-- CCiscoLineDevSpecificMsgWaiting

Class Detail

class CCiscoLineDevSpecificMsgWaiting : public CCiscoLineDevSpecific
{
 public:
 CCiscoLineDevSpecificMsgWaiting() : CCiscoLineDevSpecific(SLDST_MSG_WAITING){}
 virtual ~CCiscoLineDevSpecificMsgWaiting() {}
 virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
 DWORD m_BlinkRate;
};

Parameters

DWORD m_MsgType

Equals SLDST_MSG_WAITING.

DWORD m_BlinkRate

Any supported PHONELAMPMODE_ constants that are specified in the phoneSetLamp() function.

Note Cisco Unified IP Phone 7900 Series supports only PHONELAMPMODE_OFF and
PHONELAMPMODE_STEADY
6-18
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
Message Waiting Dirn
The CCiscoLineDevSpecificMsgWaitingDirn class turns the message waiting lamp on or off for the line
that a parameter specifies and remains independent of the hLine parameter.

Note This extension does not require an extension version to be negotiated.

CCiscoLineDevSpecific
 |
 +-- CCiscoLineDevSpecificMsgWaitingDirn

Class Detail
class CCiscoLineDevSpecificMsgWaitingDirn : public CCiscoLineDevSpecific
{
 public:
 CCiscoLineDevSpecificMsgWaitingDirn() :
 CCiscoLineDevSpecific(SLDST_MSG_WAITING_DIRN) {}
 virtual ~CCiscoLineDevSpecificMsgWaitingDirn() {}
 virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
 DWORD m_BlinkRate;
 char m_Dirn[25];
};

Parameters

DWORD m_MsgType

Specifies SLDST_MSG_WAITING_DIRN.

DWORD m_BlinkRate

As in the CCiscoLineDevSpecificMsgWaiting message.

Note Cisco Unified IP Phone 7900 Series supports only PHONELAMPMODE_OFF and
PHONELAMPMODE_STEADY

char m_Dirn[25]

The directory number for which the message waiting lamp should be set.
6-19
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
Message Summary
Use the CCiscoLineDevSpecificMsgSummary class to turn the message waiting lamp on or off as well
as to provide voice and fax message counts for the line specified by the hLine parameter.

Note Be aware that this extension does not require an extension version to be negotiated.

CCiscoLineDevSpecific
|
+-- CCiscoLineDevSpecificMsgSummary

Class Detail
class CCiscoLineDevSpecificMsgSummary : public CCiscoLineDevSpecific
{
public:
 CCiscoLineDevSpecificMsgSummary() : CCiscoLineDevSpecific(SLDST_MSG_SUMMARY){}
 virtual ~CCiscoLineDevSpecificMsgSummary() {}
 virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
 DWORD m_BlinkRate;
 MSG_SUMMARY m_MessageSummary;
};

Parameters

DWORD m_MsgType

equals SLDST_MSG_SUMMARY.

DWORD m_BlinkRate

is any supported PHONELAMPMODE_ constants specified in the phoneSetLamp() function.

MSG_SUMMARY m_MessageSummary

A data structure with the following format:

typedef struct {
DWORD m_voiceCounts; // indicates if new voice counts are
 // provided. True=counts will be displayed
 // on supported phones.
DWORD m_totalNewVoiceMsgs; // specifies the total number of new
 // voice messages. This number includes all
 // the high and normal priority voice
 // messages that are new.
DWORD m_totalOldVoiceMsgs; // specifies the total number of old
 // voice messages. This number includes all
 // high and normal priority voice messages
 // that are old.
DWORD m_highPriorityVoiceCounts; // indicates if old voice
 // counts are provided. True=counts will be
 // displayed on supported phones.
DWORD m_newHighPriorityVoiceMsgs; //specifies the number of new
 // high priority voice messages.
DWORD m_oldHighPriorityVoiceMsgs; //specifies the number of old
 // high priority voice messages.
DWORD m_faxCounts; // indicates if new fax counts are
 // provided. True=counts will be displayed
 // on supported phones.
DWORD m_totalNewFaxMsgs; // specifies the total number of new
6-20
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
 // fax messages. This number includes all
 // the high and normal priority fax
 // messages that are new.
DWORD m_totalOldFaxMsgs; // specifies the total number of old
 // fax messages. This number includes all
 // high and normal priority fax messages
 // that are old.
DWORD m_highPriorityFaxCounts; // indicates if old fax counts
 // are provided. True=counts will be
 // displayed on supported phones.
DWORD m_newHighPriorityFaxMsgs; // specifies the number of new
 // high priority fax messages.
DWORD m_oldHighPriorityFaxMsgs; // specifies the number of old
 // high priority fax messages.
 } MSG_SUMMARY;
6-21
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
Message Summary Dirn
Use the CCiscoLineDevSpecificMsgSummaryDirn class to turn the message waiting lamp on or off and
to provide voice and fax message counts for the line specified by a parameter and is independent of the
hLine parameter.

Note Be aware that this extension does not require an extension version to be negotiated.

CCiscoLineDevSpecific
|
+-- CCiscoLineDevSpecificMsgSummaryDirn

Class Detail
class CCiscoLineDevSpecificMsgSummaryDirn : public CCiscoLineDevSpecific
{
public:
 CCiscoLineDevSpecificMsgSummaryDirn() : CCiscoLineDevSpecific(SLDST_MSG_SUMMARY_DIRN) {}
 virtual ~CCiscoLineDevSpecificMsgSummaryDirn() {}
 virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
 DWORD m_BlinkRate;
 char m_Dirn[25];
 MSG_SUMMARY m_MessageSummary;
};

Parameters

DWORD m_MsgType

equals SLDST_MSG_SUMMARY_DIRN.

DWORD m_BlinkRate

is as in the CCiscoLineDevSpecificMsgSummary message.

char m_Dirn[25]

is the directory number for which the message waiting lamp should be set.

MSG_SUMMARY m_MessageSummary

A data structure with the following format:

typedef struct {

DWORD m_voiceCounts; // indicates if new voice counts are

 // provided. True=counts will be displayed

 // on supported phones.

DWORD m_totalNewVoiceMsgs; // specifies the total number of new

 // voice messages. This number includes all

 // the high and normal priority voice

 // messages that are new.

DWORD m_totalOldVoiceMsgs; // specifies the total number of old

 // voice messages. This number includes all

 // high and normal priority voice messages

 // that are old.

DWORD m_highPriorityVoiceCounts; // indicates if old voice
6-22
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
 // counts are provided. True=counts will be

 // displayed on supported phones.

DWORD m_newHighPriorityVoiceMsgs; //specifies the number of new

 // high priority voice messages.

DWORD m_oldHighPriorityVoiceMsgs; //specifies the number of old

 // high priority voice messages.

DWORD m_faxCounts; // indicates if new fax counts are

 // provided. True=counts will be displayed

 // on supported phones.

DWORD m_totalNewFaxMsgs; // specifies the total number of new

 // fax messages. This number includes all

 // the high and normal priority fax

 // messages that are new.

DWORD m_totalOldFaxMsgs; // specifies the total number of old

 // fax messages. This number includes all

 // high and normal priority fax messages

 // that are old.

DWORD m_highPriorityFaxCounts; // indicates if old fax counts

 // are provided. True=counts will be

 // displayed on supported phones.

DWORD m_newHighPriorityFaxMsgs; // specifies the number of new

 // high priority fax messages.

DWORD m_oldHighPriorityFaxMsgs; // specifies the number of old

 // high priority fax messages.

 } MSG_SUMMARY;
6-23
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
Audio Stream Control
The CCiscoLineDevSpecificUserControlRTPStream class controls the audio stream of a line. To use
this class you must call the lineNegotiateExtVersion API before opening the line. When
lineNegotiateExtVersion is called ensure the highest bit is set on both the dwExtLowVersion and
dwExtHighVersion parameters. This causes the call to lineOpen to behave differently. The line does not
actually open, but waits for a lineDevSpecific call to complete the open with more information. The
CCiscoLineDevSpecificUserControlRTPStream class provides the extra information that is required.

CCiscoLineDevSpecific
 |
 +-- CCiscoLineDevSpecificUserControlRTPStream

Procedure

Step 1 Call lineNegotiateExtVersion for the deviceID of the line that is to be opened (OR 0x80000000 with the
dwExtLowVersion and dwExtHighVersion parameters).

Step 2 Call lineOpen for the deviceID of the line that is to be opened.

Step 3 Call lineDevSpecific with a CCiscoLineDevSpecificUserControlRTPStream message in the lpParams
parameter.

Class Detail
class CCiscoLineDevSpecificUserControlRTPStream : public CCiscoLineDevSpecific
 {
 public:
 CCiscoLineDevSpecificUserControlRTPStream() :
 CCiscoLineDevSpecific(SLDST_USER_CRTL_OF_RTP_STREAM),
 m_ReceiveIP(-1),
 m_ReceivePort(-1),
 m_NumAffectedDevices(0)
 {
 memset(m_AffectedDeviceID, 0, sizeof(m_AffectedDeviceID));
 }
 virtual ~CCiscoLineDevSpecificUserControlRTPStream() {}
 DWORD m_ReceiveIP; // UDP audio reception IP
 DWORD m_ReceivePort; // UDP audio reception port
 DWORD m_NumAffectedDevices;
 DWORD m_AffectedDeviceID[10];
 DWORD m_MediaCapCount;
 MEDIA_CAPS m_MediaCaps;
 virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
 };

Parameters

DWORD m_MsgType

Equals SLDST_USER_CRTL_OF_RTP_STREAM

DWORD m_ReceiveIP:

The RTP audio reception IP address in network byte order

DWORD m_ReceivePort:

The RTP audio reception port in network byte order
6-24
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
DWORD m_NumAffectedDevices:

The TSP returns this value. It contains the number of deviceIDs in the m_AffectedDeviceID array
that are valid. Any device with multiple directory numbers that are assigned to it will have multiple
TAPI lines, one per directory number.

DWORD m_AffectedDeviceID[10]:

The TSP returns this value. It contains the list of deviceIDs for any device that is affected by this
call. Do not call lineDevSpecific for any other device in this list.

DWORD m_mediaCapCount

The number of codecs that are supported for this line.

MEDIA_CAPS m_MediaCaps -

A data structure with the following format:

typedef struct {

DWORD MediaPayload;

DWORD MaxFramesPerPacket;

DWORD G723BitRate;

} MEDIA_CAPS[MAX_MEDIA_CAPS_PER_DEVICE];

This data structure defines each codec that is supported on a line. The limit specifies 18. The
following description shows each member in the MEDIA_CAPS data structure:

MediaPayload specifies an enumerated integer that contains one of the following values:

enum
 {
Media_Payload_G711Alaw64k = 2,
Media_Payload_G711Alaw56k = 3, // "restricted"
Media_Payload_G711Ulaw64k = 4,
Media_Payload_G711Ulaw56k = 5, // "restricted"
Media_Payload_G722_64k = 6,
Media_Payload_G722_56k = 7,
Media_Payload_G722_48k = 8,
Media_Payload_G7231 = 9,
Media_Payload_G728 = 10,
Media_Payload_G729 = 11,
Media_Payload_G729AnnexA = 12,
Media_Payload_G729AnnexB = 15,
Media_Payload_G729AnnexAwAnnexB = 16,
Media_Payload_GSM_Full_Rate = 18,
Media_Payload_GSM_Half_Rate = 19,
Media_Payload_GSM_Enhanced_Full_Rate = 20,
Media_Payload_Wide_Band_256k = 25,
Media_Payload_Data64 = 32,
Media_Payload_Data56 = 33,
Media_Payload_GSM = 80,
Media_Payload_G726_32K = 82,
Media_Payload_G726_24K = 83,
Media_Payload_G726_16K = 84,
// Media_Payload_G729_B = 85,
// Media_Payload_G729_B_LOW_COMPLEXITY = 86,
} Media_PayloadType;

Read MaxFramesPerPacket as MaxPacketSize. It specifies a 16-bit integer that indicates the
maximum desired RTP packet size in milliseconds. Typically, this value gets set to 20.
6-25
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
G723BitRate specifies a 6-byte field that contains either the G.723.1 information bit rate, or it
gets ignored. The following list provides values for the G.723.1 field values:

enum
 {
 Media_G723BRate_5_3 = 1, //5.3Kbps
 Media_G723BRate_6_4 = 2 //6.4Kbps
 } Media_G723BitRate;

Set Status Messages
Use the CCiscoLineDevSpecificSetStatusMsgs class to turn on or off the status messages for the line that
the hLine parameter specifies. The Cisco Unified TSP supports the following flags:

 • DEVSPECIFIC_MEDIA_STREAM—Setting this flag on a line turns on the reporting of media
streaming messages for that line. Clearing this flag turns off the reporting of media streaming
messages for that line.

 • DEVSPECIFIC_CALL_TONE_CHANGED—Setting this flag on a line turns on the reporting of
call tone changed events for that line. Clearing this flag turns off the reporting of call tone changed
events for that line.

Note This extension only applies if extension version 0x00020001 or higher is negotiated.

CCiscoLineDevSpecific
|
+-- CCiscoLineDevSpecificSetStatusMsgs

Class Detail
class CCiscoLineDevSpecificSetStatusMsgs : public CCiscoLineDevSpecific
{
public:
CCiscoLineDevSpecificSetStatusMsgs() :
CCiscoLineDevSpecific(SLDST_SET_STATUS_MESSAGES) {}
virtual ~CCiscoLineDevSpecificSetStatusMsgs() {}
DWORD m_DevSpecificStatusMsgsFlag;
virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
};

Parameters

DWORD m_MsgType

Equals SLDST_SET_STATUS_MESSAGES.

DWORD m_DevSpecificStatusMsgsFlag

Identifies which status changes cause a LINE_DEVSPECIFIC message to be sent to the application.

The supported values follow:

#define DEVSPECIFIC_MEDIA_STREAM 0x00000001
#define DEVSPECIFIC_CALL_TONE_CHANGED 0x00000002
#define CALL_DEVSPECIFIC_RTP_EVENTS 0x00000003
#define DEVSPECIFIC_IDLE_TRANSFER_REASON0x00000004
#define DEVSPECIFIC_SPEEDDIAL_CHANGED0x00000008
#define DEVSPECIFIC_PARK_STATUS 0x00000080
6-26
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
Swap-Hold/SetupTransfer

Note Cisco Unified TSP 4.0 and later do not support this.

The CCiscoLineDevSpecificSwapHoldSetupTransfer class gets used to perform a SetupTransfer
between a call that is in CONNECTED state and a call that is in the ONHOLD state. This function
changes the state of the connected call to ONHOLDPENDTRANSFER state and the ONHOLD call to
CONNECTED state. This allows a CompleteTransfer to be performed on the two calls. In Cisco Unified
TSP 4.0 and later, the TSP allows applications to use lineCompleteTransfer() to transfer the calls without
having to use the CCiscoLineDevSpecificSwapHoldSetupTransfer function. Therefore, this function
returns LINEERR_OPERATIONUNAVAIL in Cisco Unified TSP 4.0 and beyond.

CCiscoLineDevSpecific
|
+-- CCiscoLineDevSpecificSwapHoldSetupTransfer

Note This extension only applies if extension version 0x00020002 or higher is negotiated.

Class Details

class CCiscoLineDevSpecificSwapHoldSetupTransfer : public CCiscoLineDevSpecific
 {
 public:
 CCiscoLineDevSpecificSwapHoldSetupTransfer() :
CCiscoLineDevSpecific(SLDST_SWAP_HOLD_SETUP_TRANSFER) {}
 virtual ~CCiscoLineDevSpecificSwapHoldSetupTransfer() {}
 DWORD heldCallID;
 virtual DWORD dwSize(void) const {return sizeof(*this)-4;} // subtract out the
virtual function table pointer
 };

Parameters

DWORD m_MsgType

Equals SLDST_SWAP_HOLD_SETUP_TRANSFER.

DWORD heldCallID

Equals the callid of the held call that is returned in dwCallID of LPLINECALLINFO.

HCALL hCall (in lineDevSpecific parameter list)

Equals the handle of the connected call.

Redirect Reset Original Called ID
CCiscoLineDevSpecific
|
+-- CCiscoLineDevSpecificRedirectResetOrigCalled
6-27
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
Description

The CCiscoLineDevSpecificRedirectResetOrigCalled class redirects a call to another party while it
resets the original called ID of the call to the destination of the redirect.

Note This extension only applies if extension version 0x00020003 or higher is negotiated.

Class Details
class CCiscoLineDevSpecificRedirectResetOrigCalled: public CCiscoLineDevSpecific
 {
 public:
 CCiscoLineDevSpecificRedirectResetOrigCalled:
CCiscoLineDevSpecific(SLDST_REDIRECT_RESET_ORIG_CALLED) {}
 virtual ~CCiscoLineDevSpecificRedirectResetOrigCalled{}
 char m_DestDirn[25]; //redirect destination address
 virtual DWORD dwSize(void) const {return sizeof(*this)-4;} // subtract out the
virtual function table pointer
 };

Parameters

DWORD m_MsgType

Equals SLDST_REDIRECT_RESET_ORIG_CALLED.

DWORD m_DestDirn

Equals the destination address where the call needs to be redirected.

HCALL hCall (In lineDevSpecific parameter list)

Equals the handle of the connected call.

Port Registration per Call
The CCiscoLineDevSpecificPortRegistrationPerCall class registers the CTI Port for the RTP parameters
on a per-call basis. With this request, the application receives the new lineDevSpecific event that
requests that it needs to set the RTP parameters for the call.

To use this class, ensure the lineNegotiateExtVersion API is called before opening the line. When calling
lineNegotiateExtVersion, ensure the highest bit is set on both the dwExtLowVersion and
dwExtHighVersion parameters.

This causes the call to lineOpen to behave differently. The line does not actually open, but waits for a
lineDevSpecific call to complete the open with more information. The extra information required is
provided in the CciscoLineDevSpecificPortRegistrationPerCall class.

CCiscoLineDevSpecific
|
+-- CCiscoLineDevSpecificPortRegistrationPerCall

Procedure

Step 1 Call lineNegotiateExtVersion for the deviceID of the line that is to be opened (or 0x80000000 with the
dwExtLowVersion and dwExtHighVersion parameters)
6-28
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
Step 2 Call lineOpen for the deviceID of the line that is to be opened.

Step 3 Call lineDevSpecific with a CciscoLineDevSpecificPortRegistrationPerCall message in the lpParams
parameter.

Note This extension is only available if the extension version 0x00040000 or higher gets negotiated.

Class Details
class CCiscoLineDevSpecificPortRegistrationPerCall: public CCiscoLineDevSpecific
{
public:

CCiscoLineDevSpecificPortRegistrationPerCall () :
CCiscoLineDevSpecific(SLDST_USER_RECEIVE_RTP_INFO),
m_RecieveIP(-1), m_RecievePort(-1), m_NumAffectedDevices(0)
{
memset((char*)m_AffectedDeviceID, 0, sizeof(m_AffectedDeviceID));
}

virtual ~ CCiscoLineDevSpecificPortRegistrationPerCall () {}
DWORD m_NumAffectedDevices;
DWORD m_AffectedDeviceID[10];
DWORD m_MediaCapCount;
MEDIA_CAPSm_MediaCaps;
virtual DWORD dwSize(void) const {return sizeof(*this)-4;}

// subtract out the virtual function table pointer
};

Parameters

DWORD m_MsgType

Equals SLDST_USER_RECEIVE_RTP_INFO

DWORD m_NumAffectedDevices:

TSP returns this value. It contains the number of deviceIDs in the m_AffectedDeviceID array that
are valid. Any device with multiple directory numbers that are assigned to it will have multiple TAPI
lines, one per directory number.

DWORD m_AffectedDeviceID[10]:

TSP returns this value. It contains the list of deviceIDs for any device that is affected by this call.
Do not call lineDevSpecific for any other device in this list.

DWORD m_mediaCapCount

The number of codecs that are supported for this line.

MEDIA_CAPS m_MediaCaps -

A data structure with the following format:

typedef struct {
DWORD MediaPayload;
DWORD MaxFramesPerPacket;
DWORD G723BitRate;
} MEDIA_CAPS[MAX_MEDIA_CAPS_PER_DEVICE];
6-29
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
This data structure defines each codec that is supported on a line. The limit specifies 18. The
following description applies for each member in the MEDIA_CAPS data structure:

MediaPayload is an enumerated integer that contains one of the following values.

enum
{
Media_Payload_G711Alaw64k = 2,
Media_Payload_G711Alaw56k = 3, // "restricted"
Media_Payload_G711Ulaw64k = 4,
Media_Payload_G711Ulaw56k = 5, // "restricted"
Media_Payload_G722_64k = 6,
Media_Payload_G722_56k = 7,
Media_Payload_G722_48k = 8,
Media_Payload_G7231 = 9,
Media_Payload_G728 = 10,
Media_Payload_G729 = 11,
Media_Payload_G729AnnexA = 12,
Media_Payload_G729AnnexB = 15,
Media_Payload_G729AnnexAwAnnexB = 16,
Media_Payload_GSM_Full_Rate = 18,
Media_Payload_GSM_Half_Rate = 19,
Media_Payload_GSM_Enhanced_Full_Rate = 20,
Media_Payload_Wide_Band_256k = 25,
Media_Payload_Data64 = 32,
Media_Payload_Data56 = 33,
Media_Payload_GSM = 80,
Media_Payload_G726_32K = 82,
Media_Payload_G726_24K = 83,
Media_Payload_G726_16K = 84,
// Media_Payload_G729_B = 85,
// Media_Payload_G729_B_LOW_COMPLEXITY = 86,
} Media_PayloadType;

MaxFramesPerPacket should read as MaxPacketSize and comprises a 16 bit integer that is
specified in milliseconds. It indicates the RTP packet size. Typically, this value gets set to 20.

G723BitRate comprises a six byte field that contains either the G.723.1 information bit rate, or
gets ignored. The values for the G.723.1 field comprises values that are enumerated as follows.

enum
{
Media_G723BRate_5_3 = 1, //5.3Kbps
Media_G723BRate_6_4 = 2 //6.4Kbps
} Media_G723BitRate;
6-30
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
Setting RTP Parameters for Call
The CCiscoLineDevSpecificSetRTPParamsForCall class sets the RTP parameters for a specific call.

Note This extension only applies if extension version 0x00040000 or higher gets negotiated.

CCiscoLineDevSpecific
|
+-- CCiscoLineDevSpecificSetRTPParamsForCall

Class Details

class CciscoLineDevSpecificSetRTPParamsForCall: public CCiscoLineDevSpecific
{
public:

CciscoLineDevSpecificSetRTPParamsForCall () :
CCiscoLineDevSpecific(SLDST_USER_SET_RTP_INFO) {}

virtual ~ CciscoLineDevSpecificSetRTPParamsForCall () {}
virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
// subtract out the virtual function table pointer
DWORD m_RecieveIP; // UDP audio reception IP
DWORD m_RecievePort; // UDP audio reception port

 };

Parameters

DWORD m_MsgType

Equals SLDST_USER_SET_RTP_INFO

DWORD m_ReceiveIP

This specifies the RTP audio reception IP address in the network byte order to set for the call.

DWORD m_ReceivePort

This specifies the RTP audio reception port in the network byte order to set for the call.
6-31
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
Redirect Set Original Called ID
The CCiscoLineDevSpecificRedirectSetOrigCalled class redirects a call to another party while it sets the
original called ID of the call to any other party.

Note This extension only applies if extension version 0x00040000 or higher gets negotiated.

CCiscoLineDevSpecific
|
+-- CCiscoLineDevSpecificRedirectSetOrigCalled

Class Details

class CCiscoLineDevSpecificRedirectSetOrigCalled: public CCiscoLineDevSpecific
{
public:
 CCiscoLineDevSpecificRedirectSetOrigCalled () :
CCiscoLineDevSpecific(SLDST_REDIRECT_SET_ORIG_CALLED) {}
 virtual ~ CCiscoLineDevSpecificRedirectSetOrigCalled () {}
 char m_DestDirn[25];
 char m_SetOriginalCalledTo[25];
 // subtract virtual function table pointer
 virtual DWORD dwSize(void) const {return (sizeof (*this) - 4) ;
}

Parameters

DWORD m_MsgType

Equals SLDST_REDIRECT_SET_ORIG_CALLED

char m_DestDirn[25]

Indicates the destination of the redirect. If this request is being used to transfer to voice mail, set this
field to the voice mail pilot number of the DN of the line for the voice mail, to which you want to
transfer.

char m_SetOriginalCalledTo[25]

Indicates the DN to which the OriginalCalledParty needs to be set. If this request is being used to
transfer to voice mail, set this field to the DN of the line for the voice mail, to which you want to
transfer.

HCALL hCall (in lineDevSpecific parameter list)

Equals the handle of the connected call.
6-32
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
Join
The CCiscoLineDevSpecificJoin class joins two or more calls into one conference call. Each call that is
being joined can be in the ONHOLD or the CONNECTED call state.

The Cisco Unified Communications Manager may succeed in joining some calls that are specified in the
Join request, but not all. In this case, the Join request will succeed and the Cisco Unified
Communications Manager attempts to join as many calls as possible.

Note This extension only applies if extension version 0x00040000 or higher gets negotiated.

CCiscoLineDevSpecific
|
+-- CCiscoLineDevSpecificJoin

Class Details

class CCiscoLineDevSpecificJoin : public CCiscoLineDevSpecific
{
 public:
 CCiscoLineDevSpecificJoin () : CCiscoLineDevSpecific(SLDST_JOIN) {}
 virtual ~ CCiscoLineDevSpecificJoin () {}
 DWORD m_CallIDsToJoinCount;
 CALLIDS_TO_JOIN m_CallIDsToJoin;
 virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
 // subtract out the virtual function table pointer
};

Parameters

DWORD m_MsgType

Equals SLDST_JOIN

DWORD m_CallIDsToJoinCount

The number of callIDs that are contained in the m_CallIDsToJoin parameter.

CALLIDS_TO_JOIN m_CallIDsToJoin

A data structure that contains an array of dwCallIDs to join with the following format:

typedef struct {
 DWORD CallID; // dwCallID to Join
} CALLIDS_TO_JOIN[MAX_CALLIDS_TO_JOIN];

where MAX_CALLIDS_TO_JOIN is defined as:

const DWORD MAX_CALLIDS_TO_JOIN = 14;

HCALL hCall (in LineDevSpecific parameter list)

Equals the handle of the call that is being joined with callIDsToJoin to create the conference.
6-33
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
Set User SRTP Algorithm IDs
The CciscoLineDevSpecificUserSetSRTPAlgorithmID class gets used to allow applications to set SRTP
algorithm IDs. To use this class, ensure the lineNegotiateExtVersion API is called before opening the
line. When calling lineNegotiateExtVersion, ensure the highest bit or second highest bit is set on both
the dwExtLowVersion and dwExtHighVersion parameters. This causes the call to lineOpen to behave
differently. The line does not actually opens, but waits for a lineDevSpecific call to complete the open
with more information. Provide the extra information that is required in the
CciscoLineDevSpecificUserSetSRTPAlgorithmID class.

Note This extension is only available if extension version 0x80070000, 0x4007000 or higher is negotiated.

CCiscoLineDevSpecific
|
+-- CciscoLineDevSpecificUserSetSRTPAlgorithmID

Procedure

Step 1 Call lineNegotiateExtVersion for the deviceID of the line that is to be opened. (0x80070000 or
0x4007000 with the dwExtLowVersion and dwExtHighVersion parameters)

Step 2 Call lineOpen for the deviceID of the line that is to be opened.

Step 3 Call lineDevSpecific with a CciscoLineDevSpecificUserSetSRTPAlgorithmID message in the lpParams
parameter to specify SRTP algorithm IDs.

Step 4 Call lineDevSpecific with either CciscoLineDevSpecificPortRegistrationPerCall or
CCiscoLineDevSpecificUserControlRTPStream message in the lpParams parameter.

Class Detail

class CciscoLineDevSpecificUserSetSRTPAlgorithmID: public CCiscoLineDevSpecific
{
 public:
 CciscoLineDevSpecificUserSetSRTPAlgorithmID () :
 CCiscoLineDevSpecific(SLDST_USER_SET_SRTP_ALGORITHM_ID),
 m_SRTPAlgorithmCount(0),

m_SRTP_Fixed_Element_Size(4)
{
}

 virtual ~ CciscoLineDevSpecificUserSetSRTPAlgorithmID () {}
 DWORD m_SRTPAlgorithmCount; //Maximum is MAX_CISCO_SRTP_ALGORITHM_IDS

DWORD m_SRTP_Fixed_Element_Size;//Should be size of DWORD, it should be always 4.
 DWORD m_SRTPAlgorithm_Offset; //offset from beginning of the message buffer
 virtual DWORD dwSize(void) const {return sizeof(*this)-4;} // subtract out the virtual
function table pointer
};

Supported Algorithm Constants

enum CiscoSRTPAlgorithmIDs
{

SRTP_NO_ENCRYPTION=0,
6-34
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
SRTP_AES_128_COUNTER=1
};

Parameters

DWORD m_MsgType

Equals SLDST_USER_SET_SRTP_ALGORITHM_ID

DWORD m_SRTPAlgorithmCount

This numbers of algorithm IDs that are specified in this message.

DWORD m_SRTP_Fixed_Element_Size

Should be size of DWORD, it should be always 4.

DWORD m_SRTPAlgorithm_Offset

Offset from the beginning of the message buffer. This is offset where you start put algorithm ID
array.

Note Be aware that the dwSize should be recalculated based on size of the structure, m_SRTPAlgorithmCount
and m_SRTP_Fixed_Element_Size.

Explicit Acquire
The CCiscoLineDevSpecificAcquire class gets used to explicitly acquire any CTI controllable device.

If a Superprovider application needs to open any CTI Controllable device on the Cisco Unified
Communications Manager system, the application should explicitly acquire that device by using the
above interface. After successful response, it can open the device as usual.

Note Be aware that this extension is only available if extension version 0x00070000 or higher is negotiated.

CCiscoLineDevSpecific
|
+--CCiscoLineDevSpecificAcquire

Class Details
class CCiscoLineDevSpecificAcquire : public CCiscoLineDevSpecific
{
 public:
 CCiscoLineDevSpecificAcquire () : CCiscoLineDevSpecific(SLDST_ACQUIRE) {}
 virtual ~ CCiscoLineDevSpecificAcquire () {}
 char m_DeviceName[16];
 virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
 // subtract out the virtual function table pointer
};

Parameters

DWORD m_MsgType

Equals SLDST_ACQUIRE
6-35
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
m_DeviceName[16]

The DeviceName that needs to be explicitly acquired.

Explicit De-Acquire
The CCiscoLineDevSpecificDeacquire class is used to explicitly de-acquire the explicitly acquired
device.

If a Superprovider application has explicitly acquired any CTI Controllable device on the Cisco Unified
Communications Manager system, then the application should explicitly De-acquire that device by using
the above interface.

Note Be aware that this extension is only available if extension version 0x00070000 or higher is negotiated.

CCiscoLineDevSpecific
|
+--CCiscoLineDevSpecificDeacquire

Class Details

class CCiscoLineDevSpecificDeacquire : public CCiscoLineDevSpecific
{
 public:
CCiscoLineDevSpecificDeacquire () : CCiscoLineDevSpecific(SLDST_ACQUIRE) {}
 virtual ~ CCiscoLineDevSpecificDeacquire () {}
 char m_DeviceName[16];
 virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
 // subtract out the virtual function table pointer
};

Parameters

DWORD m_MsgType

Equals SLDST_DEACQUIRE

char m_DeviceName[16]

The DeviceName that needs to be explicitly de-acquired.

Redirect FAC CMC
The CCiscoLineDevSpecificRedirectFACCMC class is used to redirect a call to another party that
requires a FAC, CMC, or both.

Note Be aware that this extension is only available if extension version 0x00050000 or higher is negotiated.

CCiscoLineDevSpecific
|
+--CCiscoLineDevSpecificRedirectFACCMC
6-36
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
If the FAC is invalid, the TSP will return a new device-specific error code
LINEERR_INVALIDFAC. If the CMC is invalid, the TSP will return a new device-specific error
code LINEERR_INVALIDCMC.

Class Detail

class CCiscoLineDevSpecificRedirectFACCMC: public CCiscoLineDevSpecific
{
public:
 CCiscoLineDevSpecificRedirectFACCMC () : CCiscoLineDevSpecific(SLDST_REDIRECT_FAC_CMC)
{}
 virtual ~ CCiscoLineDevSpecificRedirectFACCMC () {}

char m_DestDirn[49];
char m_FAC[17];
char m_CMC[17];

 // subtract virtual function table pointer
 virtual DWORD dwSize(void) const {return (sizeof (*this) - 4) ;
}

Parameters

DWORD m_MsgType

Equals SLDST_REDIRECT_FAC_CMC

char m_DestDirn[49]

Indicates the destination of the redirect.

char m_FAC[17]

Indicates the FAC digits. If the application does not want to pass any FAC digits, it must set this
parameter to a NULL string.

char m_CMC[17]

Indicates the CMC digits. If the application does not want to pass any CMC digits, it must set this
parameter to a NULL string.

HCALL hCall (in lineDevSpecific parameter list)

Equals the handle of the call to be redirected.

Blind Transfer FAC CMC
The CCiscoLineDevSpecificBlindTransferFACCMC class is used to blind transfer a call to another
party that requires a FAC, CMC, or both. If the FAC is invalid, the TSP will return a new device specific
error code LINEERR_INVALIDFAC. If the CMC is invalid, the TSP will return a new device specific
error code LINEERR_INVALIDCMC.

Note Be aware that this extension is only available if extension version 0x00050000 or higher is negotiated.

CCiscoLineDevSpecific
|
+--CCiscoLineDevSpecificBlindTransferFACCMC
6-37
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
Class Detail

class CCiscoLineDevSpecificBlindTransferFACCMC: public CCiscoLineDevSpecific
{
public:
 CCiscoLineDevSpecificBlindTransferFACCMC () :
CCiscoLineDevSpecific(SLDST_BLIND_TRANSFER_FAC_CMC) {}
 virtual ~ CCiscoLineDevSpecificBlindTransferFACCMC () {}

char m_DestDirn[49];
char m_FAC[17];
char m_CMC[17];

 // subtract virtual function table pointer
 virtual DWORD dwSize(void) const {return (sizeof (*this) - 4) ;
}

Parameters

DWORD m_MsgType

Equals SLDST_BLIND_TRANSFER_FAC_CMC

char m_DestDirn[49]

Indicates the destination of the blind transfer.

char m_FAC[17]

Indicates the FAC digits. If the application does not want to pass any FAC digits, it must set this
parameter to a NULL string.

char m_CMC[17]

Indicates the CMC digits. If the application does not want to pass any CMC digits, it must set this
parameter to a NULL string.

HCALL hCall (in lineDevSpecific parameter list)

Equals the handle of the call that is to be blind transferred.

CTI Port Third Party Monitor
The CCiscoLineDevSpecificCTIPortThirdPartyMonitor class is used for opening CTI ports in third-
party mode.

To use this class, ensure the lineNegotiateExtVersion API is called before opening the line. When calling
lineNegotiateExtVersion, ensure the highest bit is set on both the dwExtLowVersion and
dwExtHighVersion parameters. This causes the call to lineOpen to behave differently. The line does not
actually open, but waits for a lineDevSpecific call to complete the open with more information. Provide
the extra information that is required in the CCiscoLineDevSpecificCTIPortThirdPartyMonitor class.

CCiscoLineDevSpecific
|
+-- CCiscoLineDevSpecificCTIPortThirdPartyMonitor

Procedure

Step 1 Call lineNegotiateExtVersion for the deviceID of the line that is to be opened. (OR 0x80000000 with the
dwExtLowVersion and dwExtHighVersion parameters)

Step 2 Call lineOpen for the deviceID of the line that is to be opened.
6-38
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
Step 3 Call lineDevSpecific with a CCiscoLineDevSpecificCTIPortThirdPartyMonitor message in the
lpParams parameter.

Note Be aware that this extension is only available if extension version 0x00050000 or higher is negotiated.

Class Detail

class CCiscoLineDevSpecificCTIPortThirdPartyMonitor: public CCiscoLineDevSpecific
{
public:

CCiscoLineDevSpecificCTIPortThirdPartyMonitor () :
CCiscoLineDevSpecific(SLDST_CTI_PORT_THIRD_PARTY_MONITOR) {}
virtual ~ CCiscoLineDevSpecificCTIPortThirdPartyMonitor () {}
virtual DWORD dwSize(void) const {return sizeof(*this)-4;} //
subtract out the virtual function table pointer

};

Parameters

DWORD m_MsgType

equals SLDST_CTI_PORT_THIRD_PARTY_MONITOR

Send Line Open
The CciscoLineDevSpecificSendLineOpen class is used for general delayed open purpose. To use this
class, ensure the lineNegotiateExtVersion API is called before opening the line. When calling
lineNegotiateExtVersion, ensure the second highest bit is set on both the dwExtLowVersion and
dwExtHighVersion parameters. This causes the call to lineOpen to behave differently. The line does not
actually open, but waits for a lineDevSpecific call to complete the open with more information. The extra
information required is provided in the CciscoLineDevSpecificUserSetSRTPAlgorithmID class.

CCiscoLineDevSpecific
|
+-- CciscoLineDevSpecificSendLineOpen

Procedure

Step 1 Call lineNegotiateExtVersion for the deviceID of the line that is to be opened. (0x40070000 with the
dwExtLowVersion and dwExtHighVersion parameters).

Step 2 Call lineOpen for the deviceID of the line that is to be opened.

Step 3 Call other lineDevSpecific, like CciscoLineDevSpecificUserSetSRTPAlgorithmID message in the
lpParams parameter to specify SRTP algorithm IDs.

Step 4 Call lineDevSpecific with either CciscoLineDevSpecificSendLineOpen to trigger the lineopen from
TSP side.
6-39
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
Note Be aware that this extension is only available if extension version 0x40070000 or higher is negotiated.

Class Detail

class CciscoLineDevSpecificSendLineOpen: public CCiscoLineDevSpecific
 {
 public:
 CciscoLineDevSpecificSendLineOpen () :

CCiscoLineDevSpecific(SLDST_SEND_LINE_OPEN) {}

 virtual ~ CciscoLineDevSpecificSendLineOpen () {}
 virtual DWORD dwSize(void) const {return sizeof(*this)-4;} // subtract out the virtual
function table pointer
};

Set Intercom SpeedDial
Use the CciscoLineSetIntercomSpeeddial class to allow application to set or reset SpeedDial/Label on
an intercom line.

Note Be aware that this extension is only available if extension version 0x00080000 or higher is negotiated

CCiscoLineDevSpecific
|
+-- CciscoLineSetIntercomSpeeddial

Procedure

Step 1 Call lineNegotiateExtVersion for the deviceID of the line that is to be opened (0x00080000 or higher).

Step 2 Call lineOpen for the deviceID of the line that is to be opened.

Step 3 Wait for line in service.

Step 4 Call CciscoLineSetIntercomSpeeddial to set or reset speed dial setting on the intercom line.

Class Detail

class CciscoLineSetIntercomSpeeddial: public CCiscoLineDevSpecific
 {
 public:
 CciscoLineSetIntercomSpeeddial () :

CCiscoLineDevSpecific(SLDST_LINE_SET_INTERCOM_SPEEDDIAL) {}

 virtual ~ CciscoLineSetIntercomSpeeddial () {}
 DWORD SetOption; //0=clear app value, 1= set App Value
 char Intercom_DN[MAX_DIRN];
 char Intercom_Ascii_Label[MAX_DIRN];
 wchar_t Intercom_Unicode_Label[MAX_DIRN];
 virtual DWORD dwSize(void) const {return sizeof(*this)-4;} // subtract out the virtual
function table pointer
};
6-40
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
Parameters

DWORD m_MsgType

Equals SLDST_USER_SET_INTERCOM_SPEEDDIAL

DWORD SetOption

Use this parameter to indicate whether the application wants to set a new intercom speed dial value
or clear the previous value. 0 = clear, 1 = set.

Char Intercom_DN [MAX_DIRN]

A DN array that indicates the intercom target

Char Intercom_Ascii_Label[MAX_DIRN]

Indicates the ASCII value of the intercom line label

Wchar_tIntercom_Unicode_Label[MAX_DIRN]

Indicates the Unicode value of the intercom line label

MAX_DIRN is defined as 25.

Intercom Talk Back
Use the CCiscoLineDevSpecificTalkBack class to allow application to initiate talk back on an incoming
intercom call on an intercom line.

Note Be aware that this extension is only available if extension version 0x00080000 or higher is negotiated.

CCiscoLineDevSpecific
|
+-- CCiscoLineDevSpecificTalkBack

Class Detail

class CCiscoLineDevSpecificTalkBack: public CCiscoLineDevSpecific
{
 public:
 CCiscoLineDevSpecificTalkBack () :
 CCiscoLineDevSpecific(SLDST_INTERCOM_TALKBACK) {}

 virtual ~ CCiscoLineDevSpecificTalkBack () {}
 virtual DWORD dwSize(void) const {return sizeof(*this)-4;} // subtract out the virtual
function table pointer
};

Redirect with Feature Priority
CciscoLineRedirectWithFeaturePriority enables an application to redirect calls with specified feature
priorities. The following is the structure of CciscoLineDevSpecific:

CCiscoLineDevSpecific
|
+-- CciscoLineRedirectWithFeaturePriority
6-41
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
Note Be aware that this extension is only available if the extension version 0x00080001 or higher is
negotiated.

Detail

class CciscoLineRedirectWithFeaturePriority: public CCiscoLineDevSpecific
 {
 public:
 CciscoLineRedirectWithFeaturePriority() :

CCiscoLineDevSpecific(SLDST_REDIRECT_WITH_FEATURE_PRIORITY) {}

 virtual ~ CciscoLineRedirectWithFeaturePriority () {}
CiscoDoNotDisturbFeaturePriority FeaturePriority;
char m_DestDirn[25];

 virtual DWORD dwSize(void) const {return sizeof(*this)-4;} // subtract out the virtual
function table pointer
};

Parameters

DWORD m_MsgType

Equals SLDST_REDIRECT_WITH_FEATURE_PRIORITY

enum CiscoDoNotDisturbFeaturePriority {CallPriority_NORMAL = 1, CallPriority_URGENT = 2,
CallPriority_EMERGENCY = 3};

This identifies the priorities.

char m_DestDirn[25];

This is redirect destination.

Start Call Monitoring
Use CCiscoLineDevSpecificStartCallMonitoring to allow application to send a start monitoring request
for the active call on a line.

Note Be aware that this extension is only available if extension version 0x00080000 or higher is negotiated.

CCiscoLineDevSpecific
|
+-- CCiscoLineDevSpecificStartCallMonitoring

Class Detail

class CCiscoLineDevSpecificStartCallMonitoring: public CCiscoLineDevSpecific
{
public:
 CCiscoLineDevSpecificStartCallMonitoring () :
CCiscoLineDevSpecific(SLDST_START_CALL_MONITORING) {}
 virtual ~ CCiscoLineDevSpecificStartCallMonitoring () {}
 DWORD m_PermanentLineID ;
 DWORD m_MonitorMode;
6-42
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
 DWORD m_ToneDirection;
 // subtract out the virtual function table pointer
 virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
} ;

Parameters

DWORD m_MsgType

Equals SLDST_START_MONITORING

DWORD m_ PermanentLineID

The permanent lineID of the line whose active call has to be monitored.

DWORD MonitorMode

This can have the following enum value:

enum
 {
 MonitorMode_None = 0,
 MonitorMode_Silent = 1,
 MonitorMode_Whisper = 2, // Not used
 MonitorMode_Active = 3 // Not used
 } MonitorMode;

Note Silent Monitoring mode represents the only mode that is supported in which the supervisor cannot talk
to the agent.

DWORD PlayToneDirection

This parameter specifies whether a tone should play at the agent or customer phone when monitoring
starts. It can have following enum values:

enum
 {
 PlayToneDirection_LocalOnly = 0,
 PlayToneDirection_RemoteOnly,
 PlayToneDirection_BothLocalAndRemote,
 PlayToneDirection_NoLocalOrRemote
 } PlayToneDirection

Return Values

- LINERR_OPERATIONFAILED
- LINEERR_OPERATIONUNAVAIL
- LINEERR_RESOURCEUNAVAIL
- LINEERR_BIB_RESOURCE_UNAVAIL
- LINERR_PENDING_REQUEST
- LINEERR_OPERATION_ALREADY_INPROGRESS
- LINEERR_ALREADY_IN_REQUESTED_STATE
- LINEERR_PRIMARY_CALL_INVALID
- LINEERR_PRIMARY_CALL_STATE_INVALID
6-43
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
Start Call Recording
Use CCiscoLineDevSpecificStartCallRecording to allow applications to send a recording request for the
active call on that line.

Note Be aware that this extension is only available if extension version 0x00080000 or higher is negotiated

CCiscoLineDevSpecific
|
+-- CCiscoLineDevSpecificStartCallRecording

Class Detail

class CCiscoLineDevSpecificStartCallRecording: public CCiscoLineDevSpecific
{
public:
CCiscoLineDevSpecificStartCallRecording () :
CCiscoLineDevSpecific(SLDST_START_CALL_RECORDING) {}

virtual ~ CCiscoLineDevSpecificStartCallRecording () {}

DWORD m_ToneDirection;
// subtract out the virtual function table pointer
virtual DWORD dwSize(void) const {return sizeof(*this)-4;}

} ;

Parameters

DWORD m_MsgType

Equals SLDST_START_RECORDING

DWORD PlayToneDirection

This parameter specifies whether a tone should play at the agent or customer phone when recording
starts. It can have following enum values:

enum
 {
 PlayToneDirection_NoLocalOrRemote = 0,
 PlayToneDirection_LocalOnly,
 PlayToneDirection_RemoteOnly,
 PlayToneDirection_BothLocalAndRemote
 } PlayToneDirection

Return Values

- LINERR_OPERATIONFAILED
- LINEERR_OPERATIONUNAVAIL
- LINEERR_INVALCALLHANDLE
- LINEERR_BIB_RESOURCE_UNAVAIL
- LINERR_PENDING_REQUEST
- LINERR_OPERATION_ALREADY_INPROGRESS
6-44
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
StopCall Recording
Use CCiscoLineDevSpecificStopCallRecording to allow application to stop recording a call on that line.

Note Be aware that this extension is only available if extension version 0x00080000 or higher is negotiated.

CCiscoLineDevSpecific
|
+-- CCiscoLineDevSpecificStopCallRecording

Class Detail

class CCiscoLineDevSpecificStopCallRecording: public CCiscoLineDevSpecific
{
public:
CCiscoLineDevSpecificStopCallRecording () :
CCiscoLineDevSpecific(SLDST_STOP_CALL_RECORDING) {}

virtual ~ CCiscoLineDevSpecificStopCallRecording () {}

// subtract out the virtual function table pointer
virtual DWORD dwSize(void) const {return sizeof(*this)-4;}

} ;

Parameters

DWORD m_MsgType

Equals SLDST_STOP_RECORDING

Return Values

- LINERR_OPERATIONFAILED
- LINEERR_OPERATIONUNAVAIL
- LINEERR_INVALCALLHANDLE
- LINERR_PENDING_REQUEST

Set IP Address Mode
Use CCiscoLineDevSpecificSetIPAddressMode to enable the application to set the address mode during
registration. To use this class, ensure that lineNegotiateExtVersion API is called before opening the line.
When calling lineNegotiateExtVersion, ensure the highest bit or second highest is set on both the
dwExtLowVersion and dwExtHighVersion parameters. This causes the call to lineOpen to behave
differently. The line is not actually opened, but waits for a lineDevSpecific call to complete the open
with more information. Provide the extra information required in the
CCiscoLineDevSpecificSetIPAddressMode class.

CCiscoLineDevSpecific
|
+-- CCiscoLineDevSpecificSetIPAddressMode

Note Be aware that this extension is available only if extension version 0x80090000, 0x40090000 or higher
is negotiated.
6-45
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
Procedure

Step 1 Call lineNegotiateExtVersion for the deviceID of the line that is to be opened (0x80090000 or
0x40090000 with the dwExtLowVersion and dwExtHighVersion parameters).

Step 2 Call lineOpen for the deviceID of the line that is to be opened.

Step 3 Call lineDevSpecific with a CCiscoLineDevSpecificSetIPAddressMode message in the lpParams
parameter to specify IP Addressing mode.

Supported Address Modes

enum CiscoIPAddressMode

{
IP_ADDRESS_V4=1,
IP_ADDRESS_V6=2,
IP_ADDRESS_V4_V6=3

};

Class Detail

class CCiscoLineDevSpecificSetIPAddressMode: public CCiscoLineDevSpecific
{
 public:
 CCiscoLineDevSpecificSetIPAddressMode () :
 CCiscoLineDevSpecific(SLDST_USER_SET_IP_ADDRESS_MODE),
 m_IPAddressMode(0)

{
}

 virtual ~ CCiscoLineDevSpecificSetIPAddressMode () {}
 int m_ IPAddressMode; //Addressing Mode to be specified

 virtual DWORD dwSize(void) const {return sizeof(*this)-4;} // subtract out the virtual
function table pointer
};

Parameters

DWORD m_MsgType

Equals SLDST_USER_SET_IP_ADDRESS_MODE

int m_ IPAddressMode

This specifies the Addressing mode with which user wants the CTI Port/RP registered.

Set IPv6 Address
Use CCiscoLineDevSpecificSetIPv6Address class to allow the application to set IPv6 address during
static registration. To use this class, ensure the lineNegotiateExtVersion API must be called before
opening the line. When calling lineNegotiateExtVersion, ensure the highest bit or second highest must
be set on both the dwExtLowVersion and dwExtHighVersion parameters. This causes the call to
6-46
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
lineOpen to behave differently. The line does not actually open, but waits for a lineDevSpecific call to
complete the open with more information. The extra information required is provided in the
CCiscoLineDevSpecificSetIPv6Address class.

CCiscoLineDevSpecific
|
+-- CCiscoLineDevSpecificSetIPv6Address

Note Be aware that this extension is available only if extension version 0x80090000, 0x40090000 or higher
is negotiated.

Procedure

Step 1 Open Call lineNegotiateExtVersion for the deviceID of the line (0x90070000 or 0x40090000 with the
dwExtLowVersion and dwExtHighVersion parameters)

Step 2 Open Call lineOpen for the deviceID of the line.

Step 3 Call lineDevSpecific with a CCiscoLineDevSpecificSetIPAddressMode message in the lpParams
parameter to specify IP Addressing mode as IPv6.

Step 4 Call lineDevSpecific with a CCiscoLineDevSpecificSetIPv6Address message in the lpParams parameter
to specify IPv6 address for registration.

Class Detail

class CCiscoLineDevSpecificSetIPv6Address: public CCiscoLineDevSpecific
{
 public:
 CCiscoLineDevSpecificSetIPv6Address () :
 CCiscoLineDevSpecific(SLDST_USER_SET_IPv6_ADDRESS),
 m_ReceiveIPv6Address(-1), m_ReceivePort(-1)

{
}

 virtual ~ CCiscoLineDevSpecificSetIPv6Address () {}
 char m_ReceiveIPv6Address[16]; //Ipv6 address that user wants to specify

DWORD m_ReceivePort;

 virtual DWORD dwSize(void) const {return sizeof(*this)-4;} // subtract out the virtual
function table pointer
};

Parameters

DWORD m_MsgType

Equals SLDST_USER_SET_IPv6_ADDRESS

char m_ReceiveIPv6Address[16]

User has to specify the IPv6 address to register the CTI Port with

DWORD m_ReceivePort

This specifies the port number for the user to register the CTI Port.
6-47
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Specific Extensions
Set RTP Parameters for IPv6 Calls
Use CciscoLineDevSpecificSetRTPParamsForCallIPv6 class to set the RTP parameters for calls for
which you must specify IPv6 address.

Note Be aware that this extension is available only if extension version 0x00090000 or higher is negotiated.

Class Detail

class CciscoLineDevSpecificSetRTPParamsForCallIPv6: public CCiscoLineDevSpecific
{
public:
CciscoLineDevSpecificSetRTPParamsForCallIPv6 () :
CCiscoLineDevSpecific(SLDST_USER_SET_RTP_INFO_IPv6) {}
virtual ~ CciscoLineDevSpecificSetRTPParamsForCallIPv6 () {}
virtual DWORD dwSize(void) const {return sizeof(*this)-4;} // subtract out the virtual
function table pointer
char m_RecieveIPv6[16]; // UDP audio reception IPv6
DWORD m_RecievePort // UDP audio reception port
 };

Parameters

DWORD m_MsgType

Equals SLDST_USER_SET_RTP_INFO_IPv6

DWORD m_ReceiveIPv6

This is the RTP audio reception IPv6 address to set for the call

DWORD m_RecievePort

This is the RTP audio reception port to set for the call.

Direct Transfer
Use the CciscoLineDevSpecificDirectTransfer to transfer calls across lines or on the same line.

CCiscoLineDevSpecific
|
+-- CciscoLineDevSpecificDirectTransfer

Note Be aware that this extension is available only if extension version 0x00090001 or higher is negotiated.

Class Detail

class CciscoLineDevSpecificDirectTransfer: public CCiscoLineDevSpecific
{
 public:
 CciscoLineDevSpecificDirectTransfer () :
CCiscoLineDevSpecific(SLDST_DIRECT_TRANSFER) {}
 virtual ~ CciscoLineDevSpecificDirectTransfer () {}
 DWORD m_CallIDsToTransfer;
 virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
6-48
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Feature Extensions
 // subtract out the virtual function table pointer
};

Parameters

DWORD m_MsgType

equals SLDST_ DIRECT_TRANSFER

DWORD m_CallIDsToTransfer

Consult dwCallID to be transferred

HCALL hCall (in LineDevSpecific parameter list)

Equals the handle of the call that is being transferred.

Cisco Line Device Feature Extensions
CCiscoLineDevSpecificFeature represents the parent class. Currently, it consist of only one subclass:
CCiscoLineDevSpecificFeature_DoNotDisturb, which allows applications to enable and disable the
Do-Not-Disturb feature on a device.

This section describes line device feature-specific extensions to the TAPI structures that Cisco TSP
supports, and it contains the following structure:

 • LINEDEVCAPS, page 6-49

 • LINEDEVSTATUS, page 6-50

 • CCiscoLineDevSpecificFeature, page 6-50

 • Do-Not-Disturb, page 6-51

 • Do-Not-Disturb Change Notification Event, page 6-52

LINEDEVCAPS
The CiscoLineDevCaps_DevSpecificFlags structure contains line device capability extension flags that
describe the Cisco line device specific extensions for device capabilities. The
m_LineDevCaps_DevSpecificFeatureFlags field in that structure reflects extended device feature
capabilities. Currently, Cisco TSP uses only the
LINEDEVCAPS_DEVSPECIFICFEATURE_DONOTDISTURB (0x00000001) bit in that field.

// Line device capability extention flags
typedef struct CiscoLineDevCaps_DevSpecificFlags
{
 DWORD m_LineDevCaps_DevSpecificFlags; // LINEFEATURE_DEVSPECIFIC
 DWORD m_LineDevCaps_DevSpecificFeatureFlags; // LINEFEATURE_DEVSPECIFICFEAT
} CISCOLINEDEVCAPS_DEVSPECIFICFLAGS;

// Bit assignments
#define LINEDEVCAPS_DEVSPECIFICFEATURE_DONOTDISTURB 0x00000001 // Ext 00080000
6-49
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Feature Extensions
LINEDEVSTATUS
The LINEDEVSTATUS_DEV_SPECIFIC_DATA structure contains data for all device-specific
extensions that Cisco TSP added to the TAPI LINEDEVSTATUS structure. The
CiscoLineDevStatus_DoNotDisturb structure belongs to the
LINEDEVSTATUS_DEV_SPECIFIC_DATA structure and reflects the current state of the
Do-Not-Disturb feature.

Note Be aware that this extension is only available if extension version 8.0 (0x00080000) or higher is
negotiated.

// LINEDEVSTATUS 00080000 extention //
// ---------------------------------
typedef struct CiscoLineDevStatus_DoNotDisturb
{
 DWORD m_LineDevStatus_DoNotDisturbOption;
 DWORD m_LineDevStatus_DoNotDisturbStatus;
} CISCOLINEDEVSTATUS_DONOTDISTURB;

The m_LineDevStatus_DoNotDisturbOption field contains DND option that is configured for the device
and can comprise one of the following enum values:

enum CiscoDoNotDisturbOption {
 DoNotDisturbOption_NONE = 0,
 DoNotDisturbOption_RINGEROFF = 1,
 DoNotDisturbOption_REJECT = 2
};

The m_LineDevStatus_ DoNotDisturbStatus field contains current DND status on the device and can
comprise one of the following enum values:

enum CiscoDoNotDisturbStatus {
 DoNotDisturbStatus_UNKNOWN = 0,
 DoNotDisturbStatus_ENABLED = 1,
 DoNotDisturbStatus_DISABLED = 2
};

CCiscoLineDevSpecificFeature
This section provides information on how to invoke Cisco-specific TAPI extensions with the
CCiscoLineDevSpecificFeature class, which represents the parent class to all the following classes.

Note Be aware that this virtual class is provided for informational purposes only.

CCiscoLineDevSpecificFeature

Header File

The file CiscoLineDevSpecific.h contains the corresponding constant, structure, and class definitions for
the Cisco lineDevSpecificFeature extension classes.
6-50
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Feature Extensions
Class Detail

class CCiscoLineDevSpecificFeature
{
public:
 CCicsoLineDevSpecificFeature(const DWORD msgType): m_MsgType(msgType) {;}
 virtual ~ CCicsoLineDevSpecificFeature() {;}
 DWORD GetMsgType(void) const {return m_MsgType;}
 void* lpParams(void) const {return (void*)&m_MsgType;}
 virtual DWORD dwSize(void) const = 0;
private:
 DWORD m_MsgType;
};

Functions

lpParms()

Function that can be used to obtain a pointer to the parameter block

dwSize()

Function that returns size of the parameter block area

Parameter

m_MsgType

Specifies the type of message. The parameter value uniquely identifies the feature to invoke on the
device. The PHONEBUTTONFUNCTION_ TAPI_Constants definition lists the valid feature
identifiers. Currently, the only recognized value specifies
PHONEBUTTONFUNCTION_DONOTDISTURB (0x0000001A).

Each subclass of CCiscoLineDevSpecificFeature includes a unique value that is assigned to the
m_MsgType parameter.

Subclasses

Each subclass of CCiscoLineDevSpecificFeature carries a unique value that is assigned to the
m_MsgType parameter. If you are using C instead of C++, this represents the first parameter in the
structure.

Do-Not-Disturb
Use the CCiscoLineDevSpecificFeature_DoNotDisturb class in conjunction with the request to enable
or disable the DND feature on a device.

The Do-Not-Disturb feature gives phone users the ability to go into a Do Not Disturb (DND) state on
the phone when they are away from their phones or simply do not want to answer the incoming calls. A
phone softkey, DND, allows users to enable or disable this feature.

CCiscoLineDevSpecificFeature
|
+-- CCiscoLineDevSpecificFeature_DoNotDisturb
6-51
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Feature Extensions
Class Detail

class CCiscoLineDevSpecificFeature_DoNotDisturb : public CCiscoLineDevSpecificFeature
{
public:
 CCiscoLineDevSpecificFeature_DoNotDisturb()
: CCiscoLineDevSpecificFeature(PHONEBUTTONFUNCTION_DONOTDISTURB),

 m_Operation((CiscoDoNotDisturbOperation)0) {}
virtual ~CCiscoLineDevSpecificFeature_DoNotDisturb() {}
virtual DWORD dwSize(void) const {return sizeof(*this)-4;}

CiscoDoNotDisturbOperation m_Operation;
};

Parameters

DWORD m_MsgType

Equals PHONEBUTTONFUNCTION_DONOTDISTURB.

CiscoDoNotDisturbOperation m_Operation

Specifies a requested operation and can comprise one of the following enum values:

enum CiscoDoNotDisturbOperation {
 DoNotDisturbOperation_ENABLE = 1,
 DoNotDisturbOperation_DISABLE = 2
};

Do-Not-Disturb Change Notification Event
Cisco TSP notifies applications via the LINE_DEVSPECIFICFEATURE message about changes in the
DND configuration or status. To receive change notifications, an application needs to enable the
DEVSPECIFIC_DONOTDISTURB_CHANGED message flag with a lineDevSpecific
SLDST_SET_STATUS_MESSAGES request.

The LINE_DEVSPECIFICFEATURE message notifies the application about device-specific events that
occur on a line device. In the case of a Do-Not-Disturb Change Notification, the message includes
information about the type of change that occurred on a device and the resulting feature status or
configured option.

Message Details

LINE_DEVSPECIFICFEATURE
dwDevice = (DWORD) hLine;
dwCallbackInstance = (DWORD) hCallback;
dwParam1 = (DWORD) PHONEBUTTONFUNCTION_DONOTDISTURB;
dwParam2 = (DWORD) typeOfChange;
dwParam3 = (DWORD) currentValue;

enum CiscoDoNotDisturbOption {
 DoNotDisturbOption_NONE = 0,
 DoNotDisturbOption_RINGEROFF = 1,
 DoNotDisturbOption_REJECT = 2
};

enum CiscoDoNotDisturbStatus {
 DoNotDisturbStatus_UNKNOWN = 0,
 DoNotDisturbStatus_ENABLED = 1,
6-52
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Feature Extensions
 DoNotDisturbStatus_DISABLED = 2
};

enum CiscoDoNotDisturbNotification {
 DoNotDisturb_STATUS_CHANGED = 1,
 DoNotDisturb_OPTION_CHANGED = 2
};

Parameters

dwDevice

A handle to a line device

dwCallbackInstance

The callback instance that is supplied when the line is opened

dwParam1

Always equal to PHONEBUTTONFUNCTION_DONOTDISTURB for the Do-Not-Disturb change
notification

dwParam2

Indicates type of change and can comprise one of the following enum values:

enum CiscoDoNotDisturbNotification {
 DoNotDisturb_STATUS_CHANGED = 1,
 DoNotDisturb_OPTION_CHANGED = 2
};

dwParam3

If the dwParm2 indicates status change with the value DoNotDisturb_STATUS_CHANGED, this
parameter can comprise one of the following enum values:

enum CiscoDoNotDisturbStatus {
 DoNotDisturbStatus_UNKNOWN = 0,
 DoNotDisturbStatus_ENABLED = 1,
 DoNotDisturbStatus_DISABLED = 2
};

If the dwParm2 indicates option change with the value DoNotDisturb_OPTION_CHANGED, this
parameter can comprise one of the following enum values:

enum CiscoDoNotDisturbOption {
 DoNotDisturbOption_NONE = 0,
 DoNotDisturbOption_RINGEROFF = 1,
 DoNotDisturbOption_REJECT = 2
};

Cisco Phone Device-Specific Extensions
Table 6-2 lists the subclasses of CiscoPhoneDevSpecific.
6-53
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Feature Extensions
CCiscoPhoneDevSpecific
This section provides information on how to perform Cisco TAPI-specific functions with the
CCiscoPhoneDevSpecific class, which represents the parent class to all the following classes.

Note Be aware that this virtual class is provided for informational purposes only.

CCiscoPhoneDevSpecific
|
+-- CCiscoPhoneDevSpecificDataPassThrough

Header File

The file CiscoLineDevSpecific.h contains the constant, structure, and class definition for the Cisco
phone device-specific classes.

Class Detail

class CCiscoPhoneDevSpecific
{

public :
CCiscoPhoneDevSpecific(DWORD msgType):m_MsgType(msgType) {;}
virtual ~CCiscoPhoneDevSpecific() {;}
DWORD GetMsgType (void) const { return m_MsgType;}
void *lpParams(void) const {return (void*)&m_MsgType;}
virtual DWORD dwSize(void) const = 0;

private :
DWORD m_MsgType ;

}

Functions

lpParms()

Table 6-2 Cisco Phone Device-Specific TAPI functions

Cisco Functions Synopsis

CCiscoPhoneDevSpecific The CCiscoPhoneDevSpecific class represents the
parent class to the following classes.

CCiscoPhoneDevSpecificDataPassThrough This function allows application to send the Device
Specific XSI data through CTI.

CCiscoPhoneDevSpecificAcquire This function allows application to acquire any
CTI-controllable device that can get opened later in
superprovider mode.

CCiscoPhoneDevSpecificDeacquire This function allows application to deacquire a
CTI-controllable device that was explicitly acquired.

CCiscoPhoneDevSpecificGetRTPSnapshot This function allows application to request secure RTP
indicator for calls on the device.
6-54
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Feature Extensions
Function that can be used to obtain the pointer to the parameter block

dwSize()

Function that will give the size of the parameter block area

Parameter

m_MsgType

Specifies the type of message.

Subclasses

Each subclass of CCiscoPhoneDevSpecific represents a different value that is assigned to the parameter
m_MsgType. If you are using C instead of C++, this represents the first parameter in the structure.

Enumeration

The CiscoPhoneDevSpecificType enumeration includes valid message identifiers.

enum CiscoLineDevSpecificType {
CPDST_DEVICE_DATA_PASSTHROUGH_REQUEST = 1
};

CCiscoPhoneDevSpecificDataPassThrough
XSI-enabled IP phones allow applications to directly communicate with the phone and access XSI
features (for example, manipulate display, get user input, play tone, and so on). To allow TAPI
applications to have access to some of these XSI capabilities without having to setup and maintain an
independent connection directly to the phone, TAPI will provide the ability to send device data through
the CTI interface. This feature gets exposed as a Cisco Unified TSP device-specific extension.

PhoneDevSpecificDataPassthrough request only gets supported for the IP phone devices. Application
must open a TAPI phone device with minimum extension version 0x00030000 to make use of this
feature.

The CCiscoPhoneDevSpecificDataPassThrough class is used to send the device-specific data to CTI-
controlled IP phone devices.

Note Be aware that this extension requires applications to negotiate extension version as 0x00030000.

CCiscoPhoneDevSpecific
|
+-- CCiscoPhoneDevSpecificDataPassThrough

Class Detail

class CCiscoPhoneDevSpecificDataPassThrough : public CCiscoPhoneDevSpecific
{
public:

CCiscoPhoneDevSpecificDataPassThrough () :
 CCiscoPhoneDevSpecific(CPDST_DEVICE_DATA_PASSTHROUGH_REQUEST)
6-55
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Feature Extensions
{
 memset((char*)m_DeviceData, 0, sizeof(m_DeviceData)) ;
}
virtual ~CCiscoPhoneDevSpecificDataPassThrough() {;}
// data size determined by MAX_DEVICE_DATA_PASSTHROUGH_SIZE
TCHAR m_DeviceData[MAX_DEVICE_DATA_PASSTHROUGH_SIZE] ;
// subtract out the virtual funciton table pointer size
virtual DWORD dwSize (void) const {return (sizeof (*this)-4) ;}

}

Parameters

DWORD m_MsgType

Equals CPDST_DEVICE_DATA_PASSTHROUGH_REQUEST.

DWORD m_DeviceData

This character buffer contains the XML data that is to be sent to phone device.

Note Be aware that MAX_DEVICE_DATA_PASSTHROUGH_SIZE = 2000.

A phone can pass data to an application and it can get retrieved by using PhoneGetStatus
(PHONESTATUS:devSpecificData). See PHONESTATUS description for further details.

CCiscoPhoneDevSpecificAcquire
The CCiscoPhoneDevSpecificAcquire class gets used to explicitly acquire any CTI controllable device.

If a Super-provider application needs to open any CTI-controllable device on the Cisco Unified
Communications Manager system, the application should explicitly acquire that device by using the
preceding interface. After successful response, it can open the device as usual.

Note Be aware that this extension is only available if extension version 0x00070000 or higher is negotiated.

CCiscoPhoneDevSpecific
|
+-- CCiscoPhoneDevSpecificAcquire
6-56
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Cisco Line Device Feature Extensions
Class Details
class CCiscoPhoneDevSpecific Acquire : public CCiscoPhoneDevSpecific
{
 public:
CCiscoPhoneDevSpecificAcquire () : CCiscoPhoneDevSpecific (CPDST_ACQUIRE) {}
 virtual ~ CCiscoPhoneDevSpecificAcquire () {}
 char m_DeviceName[16];
 virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
 // subtract out the virtual function table pointer
};

Parameters

DWORD m_MsgType

Equals CPDST_ACQUIRE

char m_DeviceName[16]

The DeviceName that needs to be explicitly acquired.

CCiscoPhoneDevSpecificDeacquire
The CCiscoPhoneDevSpecificDeacquire class gets used to explicitly de-acquire an explicitly acquired
device.

If a SuperProvider application explicitly acquired any CTI-controllable device on the Unified
Communications Manager system, the application should explicitly de-acquire that device by using this
interface.

Note Be aware that this extension is only available if extension version 0x00070000 or higher is negotiated.

CCiscoPhoneDevSpecific
|
+-- CCiscoPhoneDevSpecificDeacquire

Class Details
class CCiscoPhoneDevSpecificDeacquire : public CCiscoPhoneDevSpecific
{
 public:
CCiscoPhoneDevSpecificDeacquire () : CCiscoPhoneDevSpecific (CPDST_ACQUIRE) {}
 virtual ~ CCiscoPhoneDevSpecificDeacquire () {}
 char m_DeviceName[16];
 virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
 // subtract out the virtual function table pointer
};

Parameters

DWORD m_MsgType

Equals CPDST_DEACQUIRE

char m_DeviceName[16]

The DeviceName that needs to be explicitly de-acquired.
6-57
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Messages
CCiscoPhoneDevSpecificGetRTPSnapshot
The CCiscoPhoneDevSpecificGetRTPSnapshot class gets used to request Call RTP snapshot event from
the device. There will be LineCallDevSpecific event for each call on the device.

Note Be aware that this extension is only available if extension version 0x00070000 or higher is negotiated.

CCiscoPhoneDevSpecific
|
+-- CCiscoPhoneDevSpecificGetRTPSnapshot

Class Details

class CCiscoPhoneDevSpecificGetRTPSnapshot: public CCiscoPhoneDevSpecific
{
 public:
CCiscoPhoneDevSpecificGetRTPSnapshot () : CCiscoPhoneDevSpecific
(CPDST_REQUEST_RTP_SNAPSHOT_INFO) {}
 virtual ~ CCiscoPhoneDevSpecificGetRTPSnapshot () {}
 char m_DeviceName[16];
 virtual DWORD dwSize(void) const {return sizeof(*this)-4;}
 // subtract out the virtual function table pointer
};

Parameters

DWORD m_MsgType

Equals CPDST_DEACQUIRE

char m_DeviceName[16]

The DeviceName that needs to be explicitly de-acquired.

Messages
This section describes the line device specific messages that the Cisco Unified TSP supports. An
application receives nonstandard TAPI messages in the following LINE_DEVSPECIFIC messages:

 • A message to signal when to stop and start streaming RTP audio.

 • A message that contains the call handle of active calls when the application starts up.

 • A message that indicates to set the RTP parameters based on the data of the message.

 • A message that indicates secure media status.

The message type represents an enumerated integer with the following values:

enum CiscoLineDevSpecificMsgType
{

SLDSMT_START_TRANSMISION = 1,
SLDSMT_STOP_TRANSMISION,
SLDSMT_START_RECEPTION,
SLDSMT_STOP_RECEPTION,
SLDSMT_LINE_EXISTING_CALL,
SLDSMT_OPEN_LOGICAL_CHANNEL,
SLDSMT_CALL_TONE_CHANGED,
6-58
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Messages
SLDSMT_LINECALLINFO_DEVSPECIFICDATA,
SLDSMT_NUM_TYPE,
SLDSMT_LINE_PROPERTY_CHANGED,
SLDSMT_MONITORING_STARTED,
SLDSMT_MONITORING_ENDED,
SLDSMT_RECORDING_STARTED,
SLDSMT_RECORDING_ENDED

};

Start Transmission Events

SLDSMT_START_TRANSMISION

When a message is received, the RTP stream transmission starts and:

 • dwParam2 specifies the network byte order IP address of the remote machine to which the RTP
stream should be directed.

 • dwParam3, specifies the high-order word that is the network byte order IP port of the remote
machine to which the RTP stream should be directed.

 • dwParam3, specifies the low-order word that is the packet size, in milliseconds, to use.

The application receives these messages to signal when to start streaming RTP audio. At extension
version 1.0 (0x00010000), the parameters have the following format:

 • dwParam1 contains the message type.

 • dwParam2 contains the IP address of the remote machine.

 • dwParam3 contains the network byte order IP port of the remote machine to which the RTP stream
should be directed in the high-order word and the packet size in milliseconds in the low-order word.

At extension version 2.0 (0x00020000), start transmission uses the following format:

 • dwParam1:from highest order bit to lowest

 • First two bits blank

 • Precedence value 3 bits

 • Maximum frames per packet 8 bits

 • G723 bit rate 2 bits

 • Silence suppression value 1 bit

 • Compression type 8 bits

 • Message type 8 bits

 • dwParam2 contains the IP address of the remote machine

 • dwParam3 contains the network byte order IP port of the remote machine to which the RTP stream
should be directed in the high-order word and the packet size in milliseconds in the low-order word.

At extension version 4.0 (0x00040000), start transmission has the following format:

 • hCall – The call of the Start Transmission event

 • dwParam1:from highest order bit to lowest

 – First two bits blank

 – Precedence value 3 bits

 – Maximum frames per packet 8 bits
6-59
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Messages
 – G723 bit rate 2 bits

 – Silence suppression value 1 bit

 – Compression type 8 bits

 – Message type 8 bits

 • dwParam2 contains the IP address of the remote machine

 • dwParam3 contains the network byte order IP port of the remote machine to which the RTP stream
should be directed in the high-order word and the packet size in milliseconds in the low-order word.

Start Reception Events

SLDSMT_START_RECEPTION

When a message is received, the RTP stream reception starts and:

 • dwParam2 specifies the network byte order IP address of the local machine to use.

 • dwParam3, specifies the high-order word that is the network byte order IP port to use.

 • dwParam3, specifies the low-order high-order word that is the packet size, in milliseconds, to use.

When a message is received, the RTP stream reception should commence.

At extension version 1, the parameters have the following format:

 • dwParam1 contains the message type.

 • dwParam2 contains the IP address of the remote machine.

 • dwParam3 contains the network byte order IP port of the remote machine to which the RTP stream
should be directed in the high-order word and the packet size in milliseconds in the low-order word.

At extension version 2 start reception uses the following format:

 • dwParam1:from highest order bit to lowest

 • First 13 bits blank

 • G723 bit rate 2 bits

 • Silence suppression value 1 bit

 • Compression type 8 bits

 • Message type 8 bits

 • dwParam2 contains the IP address of the remote machine

 • dwParam3 contains the network byte order IP port of the remote machine to which the RTP stream
should be directed in the high-order word and the packet size in milliseconds in the low-order word.

At extension version 4.0 (0x00040000), start reception uses the following format:

 • hCall – The call of the Start Reception event

 • dwParam1:from highest order bit to lowest

 – First 13 bits blank

 – G723 bit rate 2 bits

 – Silence suppression value 1 bit

 – Compression type 8 bits

 – Message type 8 bits
6-60
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Messages
 • dwParam2 contains the IP address of the remote machine

 • dwParam3 contains the network byte order IP port of the remote machine to which the RTP stream
should be directed in the high-order word and the packet size in milliseconds in the low-order word.

Stop Transmission Events

SLDSMT_STOP_TRANSMISION

When a message is received, transmission of the streaming should stop.

At extension version 1.0 (0x00010000), stop transmission uses the following format:

 • dwParam1 – Message type

At extension version 4.0 (0x00040000), stop transmission uses the following format:

 • hCall – The call for which the Stop Transmission event applies.

 • dwParam1 – Message type

Stop Reception Events

SLDSMT_STOP_RECEPTION

When a message is received, reception of the streaming should stop.

At extension version 1.0 (0x00010000), stop reception uses the following format:

 • dwParam1 - message type

At extension version 4.0 (0x00040000), stop reception uses the following format:

 • hCall – The call for which the Stop Reception event applies.

 • dwParam1 – Message type
6-61
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Messages
Existing Call Events

SLDSMT_LINE_EXISTING_CALL

These events inform the application of existing calls in the PBX when it starts up. The format of the
parameters follows:

 • dwParam1 – Message type

 • dwParam2 – Call object

 • dwParam3 – TAPI call handle

Open Logical Channel Events

SLDSMT_OPEN_LOGICAL_CHANNEL

When a call has media established at a CTI Port or Route Point that is registered for Dynamic Port
Registration, receipt of this message indicates that an IP address and UDP port number need to be set
for the call.

Note Be aware that this extension is only available if extension version 0x00040000 or higher gets negotiated.

The following format of the parameters applies:

 • hCall - The call for which the Open Logical Channel event applies.

 • dwParam1 – Message type

 • dwParam2 – Compression Type

 • dwParam3 – Packet size in milliseconds

At extension version 9.0 (0x00090000), start transmission has the following format:

 • hCall - The call the Open Logical Channel event is for

 • dwParam1: from highest order bit to lowest

 • First eight bits blank

 • Maximum frames per packet 8 bits

 • Compression type 8 bits

 • Message type 8 bits

 • dwParam2 contains the IP addressing mode

 • dwParam3 is for future use.

LINECALLINFO_DEVSPECIFICDATA Events

SLDSMT_LINECALLINFO_DEVSPECIFICDATA

This message indicates DEVSPECIFICDATA information changed in the DEVSPECIFIC portion of the
LINECALLINFO structure for SRTP, QoS, Partition support, call security status, CallAttributeInfo, and
CCM CallID.
6-62
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Messages
Note Be aware that SRTP, QoS, Partition support is available only if extension version 0x00070000 or higher
is negotiated, and that call security status, CallAttributeInfo and CCM CallID are available only if
extension version 0x00080000 or higher is negotiated.

The following format applies for the parameters:

 • hCall - The call handle

 • dwParam1 - Message type

SLDSMT_LINECALLINFO_DEVSPECIFICDATA\

 • dwParam2 - This bitMask Indicator field applies for SRTP, QoS and Partition.

SLDST_SRTP_INFO | SLDST_QOS_INFO | SLDST_PARTITION_INFO |
SLDST_EXTENDED_CALL_INFO|SLDST_CALL_SECURITY_STATUS|SLDST_CALL_ATTRIBUTE_INFO
|SLDST_CCM_CALLID

The bit mask values follow:

SLDST_SRTP_INFO = 0x00000001
SLDST_QOS_INFO = 0x00000002
SLDST_PARTITION_INFO = 0x00000004
SLDST_EXTENDED_CALL_INFO = 0x00000008
SLDST_CALL_ATTRIBUTE_INFO = 0x00000010
SLDST_CCM_CALLID = 0x00000020
|SLDST_CALL_SECURITY_STATUS=0x00000040

For example, if there are changes in SRTP and QoS but not in Partition, then both the
SLDST_SRTP_INFO and SLDST_QOS_INFO bits will be set. The value for dwParam2 =
SLDST_SRTP_INFO | SLDST_QOS_INFO = 0x00000011.

 • dwParam3

If a change occurs in the SRTP Information, this field would contain the CiscoSecurityIndicator.

enum CiscoSecurityIndicator
{
 SRTP_MEDIA_ENCRYPT_KEYS_AVAILABLE,
 SRTP_MEDIA_ENCRYPT_USER_NOT_AUTH,
 SRTP_MEDIA_ENCRYPT_KEYS_UNAVAILABLE,
 SRTP_MEDIA_NOT_ENCRYPTED
};

Note dwParam3 is used when dwParam2 has the SRTP bit mask set.

Call Tone Changed Events

SLDSMT_CALL_TONE_CHANGED

When a tone change occurs on a call, receipt of this message indicates the tone and the feature that
caused the tone change.

Note Be aware that this extension is only available if extension version 0x00050000 or higher is negotiated.
In the Cisco Unified TSP 4.1 release and later, this event only gets sent for Call Tone Changed Events
where the tone equals CTONE_ZIPZIP and the tone gets generated as a result of the FAC/CMC feature.
6-63
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 6 Cisco Device-Specific Extensions
Messages
The format of the parameters follows:

 • hCall—The call for which the Call Tone Changed event applies

 • dwParam—Message type

 • dwParam2—CTONE_ZIPZIP, 0x31 (Zip Zip tone)

 • dwParam3—If dwParam2 is CTONE_ZIPZIP, this parameter contains a bitmask with the following
possible values:

 – CZIPZIP_FACREQUIRED—If this bit is set, it indicates that a FAC is required.

 – CZIPZIP_CMCREQUIRED—If this bit is set, it indicates that a CMC is required.

Note For a DN that requires both codes, the first event always applies for the FAC and CMC code. The
application optionally can send both codes separated by # in the same request. The second event
generation remains optional based on what the application sends in the first request.
6-64
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

TAPI Developer Guide for Cisc
OL-18532-01
C H A P T E R 7

Cisco Unified TAPI Examples

This chapter provides examples that illustrate how to use the Cisco Unified TAPI implementation. This
chapter includes the following subroutines:

 • MakeCall

 • OpenLine

 • CloseLine

MakeCall
STDMETHODIMP CTACtrl::MakeCall(BSTR destNumber, long pMakeCallReqID, long hLine, BSTR user2user, long
translateAddr) {

AFX_MANAGE_STATE(AfxGetStaticModuleState())

USES_CONVERSION;
tracer->tracef(SDI_LEVEL_ENTRY_EXIT, "CTACtrl::Makecall %s %d %d %s %d\n",

T2A((LPTSTR)destNumber), pMakeCallReqID, hLine, T2A((LPTSTR)user2user),
translateAddr);

//CtPhoneNo m_pno;
 CtTranslateOutput to;

 //LPCSTR pszTranslatable;
CString sDialable;

CString theDestNumber(destNumber);

CtCall* pCall;
CtLine* pLine=CtLine::FromHandle((HLINE)hLine);

if (pLine==NULL) {
tracer->tracef(SDI_LEVEL_ERROR, "CTACtrl::MakeCall : pLine == NULL\n");
return S_FALSE;

} else {
pCall=new CtCall(pLine);
pCall->AddSink(this);

sDialable = theDestNumber;

if (translateAddr) {
//m_pno.SetWholePhoneNo((LPCSTR)theDestNumber);
//pszTranslatable = m_pno.GetTranslatable();
if (TSUCCEEDED(to.TranslateAddress(pCall->GetLine()->GetDeviceID(),

(LPCSTR)theDestNumber))) {
7-1
o Unified Communications Manager Release 7.1(2)

Chapter 7 Cisco Unified TAPI Examples
OpenLine
sDialable = to.GetDialableString();
}

}
TRESULT tr = pCall->MakeCall((LPCSTR)sDialable, 0, this);
if(TPENDING(tr) || TSUCCEEDED(tr)) {

//GCGC the correct hCall pointer is not being returned yet
if (translateAddr)

Fire_MakecallReply(hLine, (long)tr, (long)pCall->GetHandle(),
sDialable.AllocSysString());

else
Fire_MakecallReply(hLine, (long)tr, (long)pCall->GetHandle(),destNumber);

return S_OK;
} else {

//GCGC delete the call that was created above.
tracer->tracef(SDI_LEVEL_ERROR, "CTACtrl::MakeCall : pCall->MakeCall failed\n");
delete pCall;
return S_FALSE;

 }
}

}

OpenLine
STDMETHODIMP CTACtrl::OpenLine(long lDeviceID, BSTR lineDirNumber, long lPriviledges,

 long lMediaModes, BSTR receiveIPAddress, long lreceivePort) {
USES_CONVERSION;
tracer->tracef(SDI_LEVEL_ENTRY_EXIT, "CTACtrl::OpenLine %d %s %d %d %s %d\n",

lDeviceID, T2A((LPTSTR)lineDirNumber), lPriviledges, lMediaModes,
T2A((LPTSTR)receiveIPAddress), lreceivePort);

int lineID;
TRESULT tr;
CString strReceiveIP(receiveIPAddress);

 CString strReqAddress(lineDirNumber);

//bool bTermMedia=((!strReceiveIP.IsEmpty()) && (lreceivePort!=0));
bool bTermMedia=(((lMediaModes & LINEMEDIAMODE_AUTOMATEDVOICE) != 0) &&

(lreceivePort!=0) && (!strReceiveIP.IsEmpty()));
CtLine* pLine;

AFX_MANAGE_STATE(AfxGetStaticModuleState())

tracer->tracef(SDI_LEVEL_DETAILED, "TAC: --> OpenLine()\n");

if ((lDeviceID<0) && !strcmp((char *)lineDirNumber, "")) {
tracer->tracef(SDI_LEVEL_ERROR, "TCD: error - bad device ID and no dirn to open\n");
return S_FALSE;

}
lineID=lDeviceID;

if (lDeviceID<0) {
//search for line ID in list of lines.

 CtLineDevCaps ldc;
int numLines=::TfxGetNumLines();
for(DWORD nLineID = 0; (int)nLineID < numLines; nLineID++) {

if(/*ShouldShowLine(nLineID) &&*/ TSUCCEEDED(ldc.GetDevCaps(nLineID))) {
CtAddressCaps ac;
tracer->tracef(SDI_LEVEL_DETAILED, "CTACtrl::OpenLine :

Calling ac.GetAddressCaps %d 0\n", nLineID);
if (TSUCCEEDED(ac.GetAddressCaps(nLineID, 0))) {
7-2
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 7 Cisco Unified TAPI Examples
OpenLine
// GCGC only one address supported
 CString strCurrAddress(ac.GetAddress());
 if (strReqAddress==strCurrAddress) {

lineID=nLineID;
break;

 }
}

} else {
tracer->tracef(SDI_LEVEL_ERROR, "TAC: error - GetAddressCaps() failed\n");

}
}

}

if (lDeviceID<0) {
tracer->tracef(SDI_LEVEL_ERROR,

"TAC: error - could not find dirn %s to open line.\n",(LPCSTR)lineDirNumber);
return S_FALSE;

}

// if we are to do media termination; negotiate the extensions version

DWORD retExtVersion;
if (bTermMedia) {

TRESULT tr3;
tracer->tracef(SDI_LEVEL_DETAILED,

"TAC: lineNegotiateExtVersion - appHandle = %d, deviceID = %d, API ver = %d,
HiVer = %d, LoVer = %d\n", CtLine::GetAppHandle(), lineID,
CtLine::GetApiVersion(lineID),
0x80000000 | 0x00010000L,
0x80000000 | 0x00020000L);

tr3=::lineNegotiateExtVersion(CtLine::GetAppHandle(),
lineID, CtLine::GetApiVersion(lineID),
0x80000000 | 0x00010000L, // TAPI v1.3,
0x80000000 | 0x00020000L,
&retExtVersion);

tracer->tracef(SDI_LEVEL_DETAILED,
"TAC: lineNegotiateExtVersion returned: %d\n", tr3);

}

pLine=new CtLine();
tr=pLine->Open(lineID, this, lPriviledges, lMediaModes);
if(TSUCCEEDED(tr)) {

if (bTermMedia) {
if (retExtVersion==0x10000) {

CiscoLineDevSpecificUserControlRTPStream dsucr;
dsucr.m_RecievePort=lreceivePort;
dsucr.m_RecieveIP=::inet_addr((LPCSTR)strReceiveIP);
TRESULT tr2;

tr2=::lineDevSpecific(pLine->GetHandle(),
0,0, dsucr.lpParams(),dsucr.dwSize());

 tracer->tracef(SDI_LEVEL_DETAILED,
"TAC: lineDevSpecific returned: %d\n", tr2);

} else {
//GCGC here put in the new calls to set the media types!
CiscoLineDevSpecificUserControlRTPStream2 dsucr;
dsucr.m_RecievePort=lreceivePort;
dsucr.m_RecieveIP=::inet_addr((LPCSTR)strReceiveIP);
dsucr.m_MediaCapCount=4;

dsucr.m_MediaCaps[0].MediaPayload=4;
dsucr.m_MediaCaps[0].MaxFramesPerPacket=30;
dsucr.m_MediaCaps[0].G723BitRate=0;
7-3
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 7 Cisco Unified TAPI Examples
OpenLine
dsucr.m_MediaCaps[1].MediaPayload=9;
dsucr.m_MediaCaps[1].MaxFramesPerPacket=90;
dsucr.m_MediaCaps[1].G723BitRate=1;
dsucr.m_MediaCaps[2].MediaPayload=9;
dsucr.m_MediaCaps[2].MaxFramesPerPacket=90;
dsucr.m_MediaCaps[2].G723BitRate=2;
dsucr.m_MediaCaps[3].MediaPayload=11;
dsucr.m_MediaCaps[3].MaxFramesPerPacket=90;
dsucr.m_MediaCaps[3].G723BitRate=0;

TRESULT tr2;

tr2=::lineDevSpecific(pLine->GetHandle(),
0,0, dsucr.lpParams(),dsucr.dwSize());

 tracer->tracef(SDI_LEVEL_DETAILED,
"TAC: lineDevSpecific returned: %d\n", tr2);

}
}

CtAddressCaps ac;
LPCSTR pszAddressName;
if (TSUCCEEDED(ac.GetAddressCaps(lineID, 0))) {

// GCGC only one address supported
 pszAddressName = ac.GetAddress();

} else {
pszAddressName = NULL;

 tracer->tracef(SDI_LEVEL_ERROR, "TAC: error - GetAddressCaps() failed.\n");
}

OpenedLine((long)pLine->GetHandle(), pszAddressName, 0);

// now let's try to open the associated phone device
// Get the phone from the line

DWORDnPhoneID;
bool b_phoneFound=false;
CtDeviceID did;

 if((m_bUsesPhones) && TSUCCEEDED(did.GetID("tapi/phone", pLine->GetHandle()))) {
 nPhoneID = did.GetDeviceID();

tracer->tracef(SDI_LEVEL_DETAILED,
"TAC: Retrieved phone device %d for line.\n",nPhoneID);

// check to see if phone device is already open

long hPhone;
CtPhone* pPhone;
if (!m_deviceID2phone.Lookup((long)nPhoneID,hPhone)) {

tracer->tracef(SDI_LEVEL_SIGNIFICANT,
"TAC: phone device not found in open list, opening it...\n");

pPhone=new CtPhone();
TRESULT tr_phone;
tr_phone=pPhone->Open(nPhoneID,this);
if (TSUCCEEDED(tr_phone)) {

::phoneSetStatusMessages(pPhone->GetHandle(),
PHONESTATE_DISPLAY | PHONESTATE_LAMP |
PHONESTATE_HANDSETHOOKSWITCH | PHONESTATE_HEADSETHOOKSWITCH |
PHONESTATE_REINIT | PHONESTATE_CAPSCHANGE | PHONESTATE_REMOVED,
PHONEBUTTONMODE_KEYPAD | PHONEBUTTONMODE_FEATURE |
PHONEBUTTONMODE_CALL |
PHONEBUTTONMODE_LOCAL | PHONEBUTTONMODE_DISPLAY,
PHONEBUTTONSTATE_UP | PHONEBUTTONSTATE_DOWN);

m_phone2line.SetAt((long)pPhone->GetHandle(), (long)pLine->GetHandle());
m_line2phone.SetAt((long)pLine->GetHandle(),(long)pPhone->GetHandle());
m_deviceID2phone.SetAt((long)nPhoneID,(long)pPhone->GetHandle());
7-4
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 7 Cisco Unified TAPI Examples
CloseLine
m_phoneUseCount.SetAt((long)pPhone->GetHandle(), 1);
} else {

tracer->tracef(SDI_LEVEL_ERROR,
"TAC: error - phoneOpen failed with code %d\n", tr_phone);

}
} else {

pPhone=CtPhone::FromHandle((HPHONE)hPhone);
long theCount;

if (m_phoneUseCount.Lookup((long)pPhone->GetHandle(),theCount))
m_phoneUseCount.SetAt((long)pPhone->GetHandle(), theCount+1);

else {
//GCGC this would be an error condition!
tracer->tracef(SDI_LEVEL_ERROR,

"TAC: error - m_phoneUseCount does not contain phone entry.\n");
}

}
} else {

tracer->tracef(SDI_LEVEL_ERROR,
"TAC: error - could not retrieve PhoneID for line.\n");

}
tracer->tracef(SDI_LEVEL_DETAILED, "TAC: <-- OpenLine()\n");
return S_OK;

} else {
tracer->tracef(SDI_LEVEL_ERROR, "TAC: error - lineOpen failed: %d\n", tr);
tracer->tracef(SDI_LEVEL_DETAILED, "TAC: <-- OpenLine()\n");
OpenLineFailed(tr,0);
delete pLine;
return S_FALSE;

}
}

CloseLine
STDMETHODIMP CTACtrl::CloseLine(long hLine) {

AFX_MANAGE_STATE(AfxGetStaticModuleState())

tracer->tracef(SDI_LEVEL_ENTRY_EXIT, "CTACtrl::CloseLine %d\n", hLine);

CtLine* pLine;
pLine=CtLine::FromHandle((HLINE) hLine);

if (pLine!=NULL) {
// close the line
pLine->Close();
// remove it from the list
delete pLine;
long hPhone;
long theCount;
if ((m_bUsesPhones) && (m_line2phone.Lookup(hLine,hPhone))) {

CtPhone* pPhone=CtPhone::FromHandle((HPHONE)hPhone);
if (pPhone!=NULL) {

if (m_phoneUseCount.Lookup(hPhone,theCount))
if (theCount>1) {

// decrease the number of lines using this phone
m_phoneUseCount.SetAt(hPhone,theCount-1);

}
else {

//nobody else is using this phone, so let's remove it.
m_deviceID2phone.RemoveKey((long)pPhone->GetDeviceID());
7-5
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Chapter 7 Cisco Unified TAPI Examples
CloseLine
m_phone2line.RemoveKey(hPhone);
m_phoneUseCount.RemoveKey(hPhone);

//now let's close the phone
pPhone->Close();

}
}
//either way, remove the map entry from line to phone.
m_line2phone.RemoveKey(hLine);

}
return S_OK;

}
else
return S_FALSE;

}

7-6
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

TAPI Developer Guide for Cisco Unif
OL-18532-01

A
 P P E N D I X A

Message Sequence Charts

This appendix contains message sequences or call scenarios and illustrates a subset of these scenarios
that are supported by the Cisco Unified TSP. Be aware that the event order is not guaranteed in all cases
and can vary depending on the scenario and the event.

This appendix contains the following sections:

 • Abbreviations, page A-2

 • Manual Outbound Call, page A-2

 • Blind Transfer, page A-5

 • Redirect Set Original Called (TxToVM), page A-6

 • Shared Lines-Initiating a New Call Manually, page A-9

 • Presentation Indication, page A-13

 • Forced Authorization and Client Matter Code Scenarios, page A-18

 • Refer and Replaces Scenarios, page A-27

 • 3XX, page A-36

 • SRTP, page A-37

 • Intercom, page A-37

 • Secure Conferencing, page A-40

 • Monitoring and Recording, page A-45

 • Conference Enhancements, page A-50

 • Calling Party IP Address, page A-57

 • Click to Conference, page A-58

 • Calling Party Normalization, page A-67

 • Do Not Disturb–Reject, page A-71

 • Join Across Lines, page A-74

 • IPv6 Use Cases, page A-88

 • Direct Transfer Across Lines, page A-96

 • Swap or Cancel Support, page A-103

 • Drop Any Party, page A-125

 • Park Monitoring, page A-138
A-1
ied Communications Manager Release 7.1(2)

Appendix A Message Sequence Charts
 • Logical Partitioning Support, page A-149

 • Support for Cisco IP Phone 6900 Series, page A-153

Abbreviations
The following list gives abbreviations that are used in the CTI events that are shown in each scenario:

 • NP—Not Present

 • LR—LastRedirectingParty

 • CH—CtiCallHandle

 • GCH—CtiGlobalCallHandle

 • RIU—RemoteInUse flag

 • DH—DeviceHandle

Manual Outbound Call
Table A-1 describes the message sequences for Manual Outbound Call when party A is idle.

Table A-1 Message Sequences for Manual Outbound Call

Action CTI Messages TAPI Messages TAPI Structures
1. Party A goes off-hook NewCallEven

CH=C1,
GCH=G1,
Calling=A,
Called=NP,
OrigCalled=NP,
LR=NP,
State=Dialtone,
Origin=OutBound,
Reason=Direct

LINE_APPNEWCALL
hDevice=A
dwCallbackInstance=0
dwParam1=0
dwParam2=hCall-1
dwParam3=OWNER

LINECALLINFO (hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=NP
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionID=NP

CallStateChangedEvent,
CH=C1,
State=Dialtone,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=NP,
OrigCalled=NP,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=DIALTONE
dwParam2=UNAVAIL
dwParam3=0

No change
A-2
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
2. Party A dials Party B CallStateChangedEvent,
CH=C1,
State=Dialing,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=NP,
OrigCalled=NP,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=DIALING
dwParam2=0
dwParam3=0

No change

3. Party B accepts call CallStateChangedEvent,
CH=C1,
State=Proceeding,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=B,
OrigCalled=B,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=PROCEEDING
dwParam2=0
dwParam3=0

LINE_CALLINFO
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=CALLEDID
dwParam2=0
dwParam3=0

LINECALLINFO (hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=B
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionID=NP

CallStateChangedEvent,
CH=C1,
State=Ringback,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=B,
OrigCalled=B,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=RINGBACK
dwParam2=0
dwParam3=0

No change

Table A-1 Message Sequences for Manual Outbound Call (continued)
A-3
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
4. Party B answers call CallStateChangedEvent,
CH=C1,
State=Connected,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=B,
OrigCalled=B,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=CONNECTED
dwParam2=ACTIVE
dwParam3=0

LINE_CALLINFO
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=CONNECTEDI
D
dwParam2=0
dwParam3=0

LINECALLINFO (hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=B
dwConnectedID=B
dwRedirectionID=NP
dwRedirectionID=NP

CallStartReceptionEvent,
DH=A, CH=C1

LINE_DEVSPECIFIC1
hDevice=hCall-1
dwCallBackInstance=0
dwParam1=StartReception
dwParam2=IP Address
dwParam3=Port

No change

CallStartTransmissionEvent,
DH=A, CH=C1

LINE_DEVSPECIFIC2
hDevice=hCall-1
dwCallBackInstance=0
dwParam1=StartTransmissi
on
dwParam2=IP Address
dwParam3=Port

No change

1. LINE_DEVSPECIFIC events are sent only if the application has requested them by using lineDevSpecific()

2. LINE_DEVSPECIFIC events are sent only if the application has requested them by using lineDevSpecific()

Table A-1 Message Sequences for Manual Outbound Call (continued)
A-4
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Blind Transfer
Table A-2 describes the message sequences for Blind Transfer when A calls B, B answers, and A and B
are connected.

Table A-2 Message Sequences for Blind Transfer

Action CTI Messages TAPI Messages TAPI Structures

Party B does a
lineBlindTranfser() to blind
transfer call from party A to
party C

Party A

CallPartyInfoChangedEvent,
CH=C1,
CallingChanged=False,
Calling=A,
CalledChanged=True,
Called=C,
OriginalCalled=B,
LR=B,
Cause=BlindTransfer

LINE_CALLINFO
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=CONNECTED
ID, REDIRECTINGID,
REDIRECTIONID

TSPI LINECALLINFO
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=B
dwConnectedID=NULL
dwRedirectingID=NP
dwRedirectionID=NP

Party B

CallStateChangedEvent,
CH=C2,
State=Idle,
Reason=Direct,
Calling=A,
Called=B,
OriginalCalled=B,
LR=NULL

TSPI:
LINE_CALLSTATE
|hDevice=hCall-1
dwCallbackInstance=0
dwParam1=IDLE
dwParam2=0
dwParam3=0

TSPI LINECALLINFO
dwOrigin=INTERNAL
dwReason=DIRECT
dwCallerID=A
dwCalledID=B
dwConnectedID=NULL
dwRedirectingID=NULL
dwRedirectionID=NULL

Party C

NewCallEvent,
CH=C3,
origin=Internal_Inbound,
Reason=BlindTransfer,
Calling=A,
Called=C,
OriginalCalled=B,
LR=B

TSPI:
LINE_APPNEWCALL
hDevice=C
dwCallbackInstance=0
dwParam1=0
dwParam2=hCall-1
dwParam3=OWNER

TSPI LINECALLINFO
dwOrigin=INTERNAL
dwReason=TRANSFER
dwCallerID=A
dwCalledID=C
dwConnectedID=NULL
dwRedirectingID=B
dwRedirectionID=C
A-5
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Redirect Set Original Called (TxToVM)
Table A-3 describes the message sequences for Redirece Set Original Called (TxToVM) feature where
A calls B, B answers, and A and B are connected.

Party C is offering Party A

CallStateChangeEvent,
CH=C1,
State=Ringback,
Reason=Direct,
Calling=A,
Called=C,
OriginalCalled=B,
LR=B

TSPI:
LINE_CALLSTATE,
hDevice=hCall-1,
dwCallbackInstance=0,
dwParam1= RINGBACK
dwParam2=0
dwParam3=0

TSPI LINECALLINFO
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=B
dwConnectedID=NULL
dwRedirectingID=B
dwRedirectionID=C

Party C

CallStateChangedEvent,
CH=C3,
State=Offering,
Reason=BlindTransfer,
Calling=A,
Called=C,
OriginalCalled=B, LR=B

TSPI:
LINE_CALLSTATE,
hDevice=hCall-1,
dwCallbackInstance=0,
dwParam1= OFFERING
dwParam2=0
dwParam3=0

TSPI LINECALLINFO
dwOrigin=INTERNAL
dwCallerID=A
dwCalledID=C
dwConnectedID=NULL
dwRedirectingID=B
dwRedirectionID=C

Table A-2 Message Sequences for Blind Transfer (continued)
A-6
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Table A-3 Message Sequences for Redirect Set Original Called (TxToVM)

Action CTI Messages TAPI Messages TAPI Structures

Party B does lineDevSpecific for
REDIRECT_SET_ORIG_CALL
ED with DestDN = C's VMP and
SetOrigCalled = C

Party A

CallPartyInfoChangedEvent,
CH=C1, CallingChanged=False,
Calling=A,
CalledChanged=True,
Called=C,
OriginalCalled=NULL,
LR=NULL, Cause=Redirect

LINE_CALLINFO,
hDevice=hCall-1,
dwCallbackInstance=0,
dwParam1=CONNECTED
ID, REDIRECTINGID,
REDIRECTIONID

TSPI LINECALLINFO
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=C
dwConnectedID=NULL
dwRedirectingID=NP
dwRedirectionID=NP

Party B

CallStateChangedEvent,
CH=C2,
State=Idle,
reason=DIRECT,
Calling=A,
Called=B,
OriginalCalled=B,
LR=NULL

TSPI:
LINE_CALLSTATE,
hDevice=hCall-1,
dwCallbackInstance=0,
dwParam1=IDLE
dwParam2=0
dwParam3=0

TSPI LINECALLINFO
dwOrigin=INTERNAL
dwReason=DIRECT
dwCallerID=A
dwCalledID=B
dwConnectedID=NULL
dwRedirectingID=NULL
dwRedirectionID=NULL

Party C's VMP

NewCallEvent,
CH=C3,
origin=Internal_Inbound,
reason=Redirect,
Calling=A,
Called=C,
OriginalCalled=C,
LR=B

TSPI:
LINE_APPNEWCALL
hDevice=C
dwCallbackInstance=0
dwParam1=0
dwParam2=hCall-1
dwParam3=OWNER

TSPI LINECALLINFO
dwOrigin=INTERNAL
dwReason=REDIRECT
dwCallerID=A
dwCalledID=C
dwConnectedID=NULL
dwRedirectingID=B
dwRedirectionID=C's
VMP
A-7
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Party C is offering Party A

CallStateChangeEvent,
CH=C1,
State=Ringback,
Reason=Direct,
Calling=A,
Called=C,
OriginalCalled=C,
LR=B

TSPI:
LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1= RINGBACK
dwParam2=0
dwParam3=0

TSPI LINECALLINFO
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=B
dwConnectedID=NULL
dwRedirectingID=B
dwRedirectionID=C's
VMP

Party C

CallStateChangedEvent,
CH=C3,
State=Offering,
Reason=Redirect,
Calling=A,
Called=C,
OriginalCalled=C,
LR=B

TSPI:
LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1= OFFERING
dwParam2=0
dwParam3=0

TSPI LINECALLINFO
dwOrigin=INTERNAL
dwCallerID=A
dwCalledID=C
dwConnectedID=NULL
dwRedirectingID=B
dwRedirectionID=C

Table A-3 Message Sequences for Redirect Set Original Called (TxToVM) (continued)

Action CTI Messages TAPI Messages TAPI Structures
A-8
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Shared Lines-Initiating a New Call Manually
Table A-4 describes the message sequences for Shared Lines-Initiating a new call manually where Party
A and Party A’ represent shared line appearances. Also, Party A and Party A’ are idle.

Table A-4 Message Sequences for Shared Lines-Initiating a New Call Manually

Action CTI Messages TAPI Messages TAPI Structures

1. Party A goes off-hook NewCallEvent,
CH=C1,
GCH=G1,
Calling=A,
Called=NP,
OrigCalled=NP,
LR=NP,
State=Dialtone,
Origin=OutBound,
Reason=Direct,
RIU=false

LINE_APPNEWCALL
hDevice=A
dwCallbackInstance=0
dwParam1=0
dwParam2=hCall-1
dwParam3=OWNER

LINECALLINFO (hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=NP
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionID=NP

CallStateChangedEvent,
CH=C1,
State=Dialtone,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=NP,
OrigCalled=NP,
LR=NP,
RIU=false

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=DIALTONE
dwParam2=UNAVAIL
dwParam3=0

No change

Party A’

NewCallEvent,
CH=C1,
GCH=G1,
Calling=A’,
Called=NP,
OrigCalled=NP,
LR=NP, S
tate=Dialtone,
Origin=OutBound,
Reason=Direct,
RIU=true

LINE_APPNEWCALL
hDevice=A’
dwCallbackInstance=0
dwParam1=0
dwParam2=hCall-2
dwParam3=OWNER

LINECALLINFO (hCall-2)
hLine=A’
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A’
dwCalledID=NP
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionID=NP

CallStateChangedEvent,
CH=C1,
State=Dialtone,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=NP,
OrigCalled=NP,
LR=NP,
RIU=true

LINE_CALLSTATE
hDevice=hCall-2
dwCallbackInstance=0
dwParam1=CONNECTED
dwParam2=INACTIVE
dwParam3=0

No change
A-9
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
2. Party A dials Party B Party A

CallStateChangedEvent,
CH=C1,
State=Dialing,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=NP,
OrigCalled=NP,
LR=NP,
RIU=false

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=DIALING
dwParam2=0
dwParam3=0

No change

Party A’

None None None

3. Party B accepts call Party A

CallPartyInfoChangedEvent
,
CH=C1,
CallingChanged=False,
Calling=A,
CalledChanged=true,
Called=B,
Reason=Direct,
RIU=false

Ignored No change

CallStateChangedEvent,
CH=C1,
State=Proceeding,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=B,
OrigCalled=B,
LR=NP,
RIU=false

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=PROCEEDING
dwParam2=0
dwParam3=0

LINE_CALLINFO
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=
CALLERID, CALLEDID
dwParam2=0
dwParam3=0

LINECALLINFO (hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=B
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionID=NP

CallStateChangedEvent,
CH=C1,
State=Ringback,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=B,
OrigCalled=B,
LR=NP,
RIU=false

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=RINGBACK
dwParam2=0
dwParam3=0

No change

Table A-4 Message Sequences for Shared Lines-Initiating a New Call Manually (continued)
A-10
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
3. Party B accepts call
(continued)

Party A’

CallPartyInfoChangedEvent
,
CH=C1,
CallingChanged=False,
Calling=A’,
CalledChanged=true,
Called=B,
Reason=Direct,
RIU=true

Ignored No change

CallStateChangedEvent,
CH=C1,
State=Proceeding,
Cause=CauseNoError,
Reason=Direct,
Calling=A’,
Called=B,
OrigCalled=B,
LR=NP,
RIU=true

LINE_CALLSTATE
hDevice=hCall-2
dwCallbackInstance=0
dwParam1=CONNECTED
dwParam2=INACTIVE
dwParam3=0

LINE_CALLINFO
hDevice=hCall-2
dwCallbackInstance=0
dwParam1=
CALLERID, CALLEDID
dwParam2=0
dwParam3=0

LINECALLINFO (hCall-2)
hLine=A’
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A’
dwCalledID=B
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionID=NP

CallStateChangedEvent,
CH=C1, State=Ringback,
Cause=CauseNoError,
Reason=Direct,
Calling=A’, Called=B,
OrigCalled=B,
LR=NP, RIU=true

LINE_CALLSTATE
hDevice=hCall-2
dwCallbackInstance=0
dwParam1=CONNECTED
dwParam2=INACTIVE
dwParam3=0

No change

Table A-4 Message Sequences for Shared Lines-Initiating a New Call Manually (continued)
A-11
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
4. Party B answers call Party A

CallStateChangedEvent,
CH=C1,
State=Connected,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=B,
OrigCalled=B,
LR=NP,
RIU=false

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=CONNECTED
dwParam2=ACTIVE
dwParam3=0

LINE_CALLINFO
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=CONNECTEDI
D
dwParam2=0, dwParam3=0

LINECALLINFO (hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=B
dwConnectedID=B
dwRedirectionID=NP
dwRedirectionID=NP

Party A’

CallStateChangedEvent,
CH=C1,
State=Connected,
Cause=CauseNoError,
Reason=Direct,
Calling=A’,
Called=B,
OrigCalled=B,
LR=NP,
RIU=true

LINE_CALLSTATE
hDevice=hCall-2
dwCallbackInstance=0
dwParam1=CONNECTED
dwParam2=INACTIVE
dwParam3=0

LINE_CALLINFO
hDevice=hCall-2
dwCallbackInstance=0
dwParam1=CONNECTEDI
D
dwParam2=0, dwParam3=0

LINECALLINFO (hCall-2)
hLine=A’
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A’
dwCalledID=B
dwConnectedID=B
dwRedirectionID=NP
dwRedirectionID=NP

Table A-4 Message Sequences for Shared Lines-Initiating a New Call Manually (continued)
A-12
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Presentation Indication

Making a Call Through Translation Pattern

Table A-5 describes the message sequences for the Presentation Indication scenario of making a call
through translation pattern. In the Translation Pattern admin pages, both the callerID/Name and
ConnectedID/Name get set to "Restricted".

Table A-5 Message Sequences for Making a Call Through Translation Pattern

Action CTI Messages TAPI Messages TAPI Structures

Party A goes off-hook NewCallEvent,
CH=C1, GCH=G1,
Calling=A, Called=NP,
OrigCalled=NP, LR=NP,
State=Dialtone,
Origin=OutBound,
Reason=Direct

LINE_APPNEWCALL
hDevice=A
dwCallbackInstance=0
dwParam1=0
dwParam2=hCall-1
dwParam3=OWNER

LINECALLINFO (hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=NP
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionID=NP

CallStateChangedEvent,
CH=C1, State=Dialtone,
Cause=CauseNoError,
Reason=Direct, Calling=A,
Called=NP, OrigCalled=NP,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=DIALTONE
dwParam2=UNAVAIL
dwParam3=0

No change

Party A dials Party B through
Translation pattern

CallStateChangedEvent,
CH=C1, State=Dialing,
Cause=CauseNoError,
Reason=Direct, Calling=A,
Called=NP, OrigCalled=NP,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=DIALING
dwParam2=0
dwParam3=0

No change

Party B accepts the call CallStateChangedEvent,
CH=C1, State=Proceeding,
Cause=CauseNoError,
Reason=Direct, Calling=A,
CallingPartyPI=Allowed,
Called=B, CalledPartyPI=
Restricted, OrigCalled=B,
OrigCalledPI=restricted,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=
PROCEEDING
dwParam2=0
dwParam3=0

LINE_CALLINFO
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=CALLEDID
dwParam2=0
dwParam3=0

LINECALLINFO (hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCallerIDName=A's Name
dwCalledID=B
dwCalledIDName=B’s
name dwConnectedID=NP
dwConnectedIDName=NP
dwRedirectionID=NP
dwRedirectionIDName=NP
dwRedirectionID=NP
dwRedirectionIDName=NP
A-13
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Party B accepts the call
(continued)

CallStateChangedEvent,
CH=C1, State=Ringback,
Cause=CauseNoError,
Reason=Direct, Calling=A,
CallingPI = Allowed,
Called=B, CalledPI =
Restricted, OrigCalled=B,
OrigCalledPI = Restricted,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=RINGBACK
dwParam2=0
dwParam3=0

LINECALLINFO (hCall-1)
hLine=A
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=B
dwConnectedIDFlags =
LINECALLPARTYID_
BLOCKED
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionIDFlags =
LINECALLPARTYID_
BLOCKED
dwRedirectionID=NP

Party B answers the call CallStateChangedEvent,
CH=C1, State=Connected,
Cause=CauseNoError,
Reason=Direct, Calling=A,
CallingPI = Allowed,
Called=B, CalledPI =
Restricted, OrigCalled=B,
OrigCalledPI = Restricted,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=CONNECTED
dwParam2=ACTIVE
dwParam3=0

LINE_CALLINFO
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=CONNECTEDI
D
dwParam2=0
dwParam3=0

LINECALLINFO (hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCallerIDName=A's Name
dwCalledID=B
dwCalledIDName=B’s
Name
dwConnectedID=A,
dwConnectedIDName=
A's Name,
dwRedirectingID=NP
dwRedirectingIDName=NP
dwRedirectionIDFlags =
LINECALLPARTYID_
BLOCKED
dwRedirectionID=NP
dwRedirectionIDName=NP

CallStartReceptionEvent,
DH=A, CH=C1

LINE_DEVSPECIFIC1
hDevice=hCall-1
dwCallBackInstance=0
dwParam1=
StartReception
dwParam2=IP Address
dwParam3=Port

No change

CallStartTransmissionEvent
, DH=A, CH=C1

LINE_DEVSPECIFIC1

hDevice=hCall-1
dwCallBackInstance=0
dwParam1=
StartTransmission
dwParam2=IP Address
dwParam3=Port

No change

Table A-5 Message Sequences for Making a Call Through Translation Pattern (continued)
A-14
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Blind Transfer Through Translation Pattern

Table A-6 describes the message sequences for the Presentation Indication scenario of Blind Transfer
through Translation Pattern. In this scenario, A calls via translation pattern B, B answers, and A and B
are connected.

1. LINE_DEVSPECIFIC events only get sent if the application requested them by using lineDevSpecific().

Table A-6 Message Sequences for Blind Transfer Through Translation Pattern

Action CTI Messages TAPI Messages TAPI Structures

Party B does a
lineBlindTranfser() to blind
transfer call from party A to
party C via translation pattern Party A

CallPartyInfoChangedEvent
, CH=C1,
CallingChanged=False,
Calling=A,
CallingPartyPI=Restricted,
CalledChanged=True,
Called=C,
CalledPartyPI=Restricted,
OriginalCalled=NULL,
OriginalCalledPI=Restricted
,
LR=NULL,
Cause=BlindTransfer

LINE_CALLINFO,
hDevice=hCall-1,
dwCallbackInstance=0,
dwParam1=CONNECTEDI
D, REDIRECTINGID,
REDIRECTIONID

TSPI LINECALLINFO
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerIDFlags =
LINECALLPARTYID_
BLOCKED
dwCallerID=NP
dwCallerIDName=NP
dwCalledID=B
dwCalledIDName=B’s
name
dwConnectedIDFlags =
LINECALLPARTYID_
BLOCKED
dwConnectedID=NP
dwConnectedIDName=NP
dwRedirectingID=B
dwRedirectingIDName=
B’s name
dwRedirectionIDFlags =
LINECALLPARTYID_
BLOCKED
dwRedirectionID=NP
dwRedirectionIDName=NP

Party B
A-15
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
CallStateChangedEvent,
CH=C2,
State=Idle, Reason=Direct,
Calling=A,
CallingPartyPI=Restricted,
Called=B,
CalledPartyPI=Restricted,
OriginalCalled=B,
OrigCalledPartyPI=Restrict
ed, LR=NULL

TSPI: LINE_CALLSTATE,
hDevice=hCall-1,
dwCallbackInstance=0,
dwParam1=IDLE
dwParam2=0
dwParam3=0

TSPI LINECALLINFO
dwOrigin=INTERNAL
dwReason=DIRECT
dwCallerIDFlags =
LINECALLPARTYID_
BLOCKED
dwCallerID=NP
dwCallerIDName=NP
dwCalledID=B
dwCalledIDName=B’s
name
dwConnectedIDFlags =
LINECALLPARTYID_
BLOCKED
dwConnectedID=NP
dwConnectedIDName=NP
dwRedirectingID=B
dwRedirectingIDName=
B’s name
dwRedirectionIDFlags =
LINECALLPARTYID_
BLOCKED
dwRedirectionID=NP
dwRedirectionIDName=NP

Party B does a
lineBlindTranfser() to blind
transfer call from party A to
party C via translation pattern
(continued)

Party C

NewCallEvent,
CH=C3,
origin=Internal_Inbound,
Reason=BlindTransfer,
Calling=A,
CallingPartyPI=Restricted,
Called=C,
CalledPartyPI=Restricted,
OriginalCalled=B,
OrigCalledPartyPI=Restrict
ed,
LR=B,
LastRedirectingPartyPI=
Restricted

TSPI:
LINE_APPNEWCALL
hDevice=C
dwCallbackInstance=0
dwParam1=0
dwParam2=hCall-1
dwParam3=OWNER

TSPI LINECALLINFO
dwOrigin=INTERNAL
dwReason=TRANSFER
dwCallerIDFlags =
LINECALLPARTYID_
BLOCKED
dwCallerID=NP
dwCallerIDName=NP
dwCalledID=NP
dwCalledIDName=NP
dwConnectedIDFlags =
LINECALLPARTYID_
BLOCKED
dwConnectedID=NP
dwConnectedIDName=NP
dwRedirectingID=B
dwRedirectingIDName=
B's name
dwRedirectionIDFlags =
LINECALLPARTYID_
BLOCKED
dwRedirectionID=NP
dwRedirectionIDName=NP

Table A-6 Message Sequences for Blind Transfer Through Translation Pattern (continued)
A-16
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Party C is offering Party A

CallStateChangeEvent,
CH=C1,
State=Ringback,
Reason=Direct,
Calling=A,
CallingPartyPI=Restricted,
Called=C,
CalledPartyPI=Restricted,
OriginalCalled=B,
OrigCalledPartyPI=Restrict
ed,
LR=B,
LastRedirectingPartyPI=
Restricted

TSPI: LINE_CALLSTATE,
hDevice=hCall-1,
dwCallbackInstance=0,
dwParam1= RINGBACK
dwParam2=0
dwParam3=0

TSPI LINECALLINFO
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerIDFlags =
LINECALLPARTYID_
BLOCKED
dwCallerID=NP
dwCallerIDName=NP
dwCalledID=B
dwCalledIDName=B’s
name
dwConnectedIDFlags =
LINECALLPARTYID_
BLOCKED
dwConnectedID=NP
dwConnectedIDName=NP
dwRedirectingID=B
dwRedirectingIDName=
B’s name
dwRedirectionIDFlags =
LINECALLPARTYID_
BLOCKED
dwRedirectionID=NP
dwRedirectionIDName=NP

Party C is offering (continued) Party C

CallStateChangedEvent,
CH=C3,
State=Offering,
Reason=BlindTransfer,
Calling=A,
CallingPartyPI=Restricted,
Called=C,
CalledPartyPI=Restricted,
OriginalCalled=B,
OrigCalledPartyPI=Restrict
ed,
LR=B,
LastRedirectingPartyPI=
Restricted

TSPI: LINE_CALLSTATE,
hDevice=hCall-1,
dwCallbackInstance=0,
dwParam1= OFFERING
dwParam2=0
dwParam3=0

TSPI LINECALLINFO
dwOrigin=INTERNAL
dwCallerIDFlags =
LINECALLPARTYID_
BLOCKED dwCallerID=NP
dwCallerIDName=NP
dwCalledID=NP
dwCalledIDName=NP
dwConnectedIDFlags =
LINECALLPARTYID_
BLOCKED
dwConnectedID=NP
dwConnectedIDName=NP
dwRedirectingID=B
dwRedirectingIDName=
B's name
dwRedirectionIDFlags =
LINECALLPARTYID_
BLOCKED
dwRedirectionID=NP
dwRedirectionIDName=NP

Table A-6 Message Sequences for Blind Transfer Through Translation Pattern (continued)
A-17
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Forced Authorization and Client Matter Code Scenarios

Manual Call to a Destination that Requires an FAC

Table A-7 describes the message sequences for the Forced Authorization and Client Matter Code
scenario of Manual Call to a Destination that requires an FAC.

Preconditions

Party A is Idle. Party B requires an FAC.

The scenario remains similar if Party B requires a CMC instead of an FAC.

Table A-7 Message Sequences for Manual Call to a Destination that Requires an FAC

Actions CTI Message TAPI Messages TAPI Structures

Party A goes off-hook NewCallEvent,
CH=C1,
GCH=G1,
Calling=A,
Called=NP,
OrigCalled=NP,
LR=NP,
State=Dialtone,
Origin=OutBound,
Reason=Direct

LINE_APPNEWCALL
hDevice=A
dwCallbackInstance=0
dwParam1=0
dwParam2=hCall-1
dwParam3=OWNER

LINECALLINFO (hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=NP
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionID=NP

CallStateChangedEvent,
CH=C1,
State=Dialtone,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=NP,
OrigCalled=NP,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=DIALTONE
dwParam2=UNAVAIL
dwParam3=0

No change
A-18
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Manual Call to a Destination that Requires both FAC and CMC

Table A-8 describes the message sequences for the Forced Authorization and Client Matter Code
scenario of a manual call to a destination that requires both FAC and CMC.

Preconditions

Party A is Idle. Party B requires an FAC and a CMC.

Party A dials Party B CallStateChangedEvent,
CH=C1,
State=Dialing,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=NP,
OrigCalled=NP,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=DIALING
dwParam2=0
dwParam3=0

No change

CallToneChangedEvent,
CH=C1,
Tone=ZipZip,
Feature=FACCMC,
FACRequired=True,
CMCRequired=False

LINE_DEVSPECIFIC
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=SLDSMT_CAL
L_TONE_CHANGED
dwParam2=CTONE_ZIPZI
P
dwParam3=
CZIPZIP_FACREQUIRED

No change

Party A dials the FAC, and Party
B accepts the call

CallStateChangedEvent,
CH=C1,
State=Proceeding,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=B,
OrigCalled=B,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=PROCEEDING
dwParam2=0
dwParam3=0

LINE_CALLINFO
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=CALLEDID
dwParam2=0
dwParam3=0

LINECALLINFO (hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=B
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionID=NP

CallStateChangedEvent,
CH=C1,
State=Ringback,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=B,
OrigCalled=B,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=RINGBACK
dwParam2=0
dwParam3=0

No change

Table A-7 Message Sequences for Manual Call to a Destination that Requires an FAC (continued)

Actions CTI Message TAPI Messages TAPI Structures
A-19
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Table A-8 Message Sequences for Manual Call to a Destination that Requires both FAC and CMC

Actions CTI Message TAPI Messages TAPI Structures

Party A goes off-hook NewCallEvent,
CH=C1,
GCH=G1,
Calling=A,
Called=NP,
OrigCalled=NP,
LR=NP,
State=Dialtone,
Origin=OutBound,
Reason=Direct

LINE_APPNEWCALL
hDevice=A
dwCallbackInstance=0
dwParam1=0
dwParam2=hCall-1
dwParam3=OWNER

LINECALLINFO (hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=NP
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionID=NP

CallStateChangedEvent,
CH=C1,
State=Dialtone,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=NP,
OrigCalled=NP,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=DIALTONE
dwParam2=UNAVAIL
dwParam3=0

No change

Party A dials Party B CallStateChangedEvent,
CH=C1,
State=Dialing,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=NP,
OrigCalled=NP,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=DIALING
dwParam2=0
dwParam3=0

No change

CallToneChangedEvent,
CH=C1,
Tone=ZipZip,
Feature=FACCMC,
FACRequired=True,
CMCRequired=True

LINE_DEVSPECIFIC
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=SLDSMT_CAL
L_TONE_CHANGED
dwParam2=CTONE_ZIPZI
P
dwParam3=
CZIPZIP_FACREQUIRED,
CZIPZIP_CMCREQUIRED

No change

Party A dials the FAC CallToneChangedEvent,
CH=C1,
Tone=ZipZip,
Feature=FACCMC,
FACRequired=False,
CMCRequired=True

LINE_DEVSPECIFIC
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=SLDSMT_CAL
L_TONE_CHANGED
dwParam2=CTONE_ZIPZI
P
dwParam3=
CZIPZIP_CMCREQUIRED

No change
A-20
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
lineMakeCall to a Destination that Requires an FAC

Table A-9 describes the message sequences for the Forced Authorization and Client Matter Code
scenario of lineMakeCall to a destination that requires an FAC.

Preconditions

Party A is Idle. Party B requires an FAC. Note that the scenario is similar if Party requires a CMC instead
of an FAC.

Party A dials the CMC, and Party
B accepts the call

CallStateChangedEvent,
CH=C1,
State=Proceeding,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=B,
OrigCalled=B,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=PROCEEDING
dwParam2=0
dwParam3=0

LINE_CALLINFO
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=CALLEDID
dwParam2=0
dwParam3=0

LINECALLINFO (hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=B
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionID=NP

CallStateChangedEvent,
CH=C1,
State=Ringback,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=B,
OrigCalled=B,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=RINGBACK
dwParam2=0
dwParam3=0

No change

Table A-8 Message Sequences for Manual Call to a Destination that Requires both FAC and CMC (continued)

Actions CTI Message TAPI Messages TAPI Structures
A-21
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Table A-9 Message Sequences for lineMakeCall to a Destination that Requires an FAC

Actions CTI Message TAPI Messages TAPI Structures

Party A does a lineMakeCall() to
Party B

NewCallEvent,
CH=C1,
GCH=G1,
Calling=A,
Called=NP,
OrigCalled=NP,
LR=NP,
State=Dialtone,
Origin=OutBound,
Reason=Direct

LINE_CALLINFO
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=ORIGIN
dwParam2=0
dwParam3=0

LINE_CALLINFO
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=
REASON, CALLERID
dwParam2=0
dwParam3=0

LINECALLINFO (hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=NP
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionID=NP

CallStateChangedEvent,
CH=C1,
State=Dialing,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=NP,
OrigCalled=NP,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=DIALING
dwParam2=0
dwParam3=0

No change

CallToneChangedEvent,
CH=C1, Tone=ZipZip,
Feature=FACCMC,
FACRequired=True,
CMCRequired=False

LINE_DEVSPECIFIC
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=SLDSMT_CAL
L_TONE_CHANGED
dwParam2=CTONE_ZIPZI
P
dwParam3=
CZIPZIP_FACREQUIRED

No change
A-22
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
lineMakeCall to a Destination that Requires Both FAC and CMC

Table A-10 describes the message sequences for the Forced Authorization and Client Matter Code
scenario of lineMakeCall to a destination that requires both FAC and CMC. In this scenario, Party A is
Idle and Party B requires both an FAC and a CMC.

Party A does a lineDial() with
the FAC in the dial string and
Party B accepts the call

NewCallEvent,
CH=C1,
GCH=G1,
Calling=A,
Called=NP,
OrigCalled=NP,
LR=NP,
State=Dialtone,
Origin=OutBound,
Reason=Direct

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=PROCEEDING
dwParam2=0
dwParam3=0

LINE_CALLINFO
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=CALLEDID
dwParam2=0
dwParam3=0

LINECALLINFO (hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=B
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionID=NP

CallStateChangedEvent,
CH=C1,
State=Ringback,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=B,
OrigCalled=B,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=RINGBACK
dwParam2=0
dwParam3=0

No change

Table A-9 Message Sequences for lineMakeCall to a Destination that Requires an FAC (continued)

Actions CTI Message TAPI Messages TAPI Structures
A-23
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Table A-10 Message Sequences for lineMakeCall to a Destination that Requires Both FAC and CMC

Actions CTI Message TAPI Messages TAPI Structures

Party A does a lineMakeCall() to
Party B

NewCallEvent,
CH=C1,
GCH=G1,
Calling=A,
Called=NP,
OrigCalled=NP,
LR=NP,
State=Dialtone,
Origin=OutBound,
Reason=Direct

LINE_CALLINFO
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=ORIGIN
dwParam2=0
dwParam3=0

LINE_CALLINFO
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=
REASON, CALLERID
dwParam2=0
dwParam3=0

LINECALLINFO (hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=NP
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionID=NP

CallStateChangedEvent,
CH=C1,
State=Dialing,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=NP,
OrigCalled=NP,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=DIALING
dwParam2=0
dwParam3=0

No change

CallToneChangedEvent,
CH=C1,
Tone=ZipZip,
Feature=FACCMC,
FACRequired=True,
CMCRequired=True

LINE_DEVSPECIFIC
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=SLDSMT_CAL
L_TONE_CHANGED
dwParam2=CTONE_ZIPZI
P
dwParam3=
CZIPZIP_FACREQUIRED,
CZIPZIP_CMCREQUIRED

No change

Party A does a lineDial() with
the FAC in the dial string

CallToneChangedEvent,
CH=C1,
Tone=ZipZip,
Feature=FACCMC,
FACRequired=False,
CMCRequired=True

LINE_DEVSPECIFIC
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=SLDSMT_CAL
L_TONE_CHANGED
dwParam2=CTONE_ZIPZI
P
dwParam3=
CZIPZIP_CMCREQUIRED

No change
A-24
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Timeout Waiting for FAC or Invalid FAC

Table A-11 describes the message sequences for the Forced Authorization and Client Matter Code
scenario of timeout waiting for FAC or invalid FAC entered. Here, Party A is Idle and Party B requires
an FAC.

The scenario remains similar if Party B required a CMC instead of a FAC.

Party A does a lineDial() with
the CMC in the dial string and
Party B accepts the call

CallStateChangedEvent,
CH=C1,
State=Proceeding,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=B,
OrigCalled=B,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=PROCEEDING
dwParam2=0
dwParam3=0

LINE_CALLINFO
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=CALLEDID
dwParam2=0
dwParam3=0

LINECALLINFO (hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=B
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionID=NP

CallStateChangedEvent,
CH=C1,
State=Ringback,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=B,
OrigCalled=B,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=RINGBACK
dwParam2=0
dwParam3=0

No change

Table A-10 Message Sequences for lineMakeCall to a Destination that Requires Both FAC and CMC (continued)

Actions CTI Message TAPI Messages TAPI Structures
A-25
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Table A-11 Message Sequences for Timeout Waiting for FAC or Invalid FAC

Actions CTI Message TAPI Messages TAPI Structures

Party A does a lineMakeCall() to
Party B

NewCallEvent,
CH=C1,
GCH=G1,
Calling=A,
Called=NP,
OrigCalled=NP,
LR=NP,
State=Dialtone,
Origin=OutBound,
Reason=Direct

LINE_CALLINFO
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=ORIGIN
dwParam2=0
dwParam3=0

LINE_CALLINFO
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=
REASON, CALLERID
dwParam2=0
dwParam3=0

LINECALLINFO (hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=NP
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionID=NP

CallStateChangedEvent,
CH=C1,
State=Dialing,
Cause=CauseNoError,
Reason=Direct,
Calling=A,
Called=NP,
OrigCalled=NP,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=DIALING
dwParam2=0
dwParam3=0

No change

CallToneChangedEvent,
CH=C1,
Tone=ZipZip,
Feature=FACCMC,
FACRequired=True,
CMCRequired=False

LINE_DEVSPECIFIC
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=SLDSMT_CAL
L_TONE_CHANGED
dwParam2=CTONE_ZIPZI
P
dwParam3=
CZIPZIP_FACREQUIRED

No change

T302 timer times out waiting for
digits, or Party A does a
lineDial() with an invalid FAC

CallStateChangedEvent,
CH=C1,
State=Disconnected,
Cause=
CtiNoRouteToDDestination
,
Reason=FACCMC,
Calling=A, Called=NP,
OrigCalled=NP, LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=DISCONNECT
ED
dwParam2=DISCONNECT
MODE_FACCMC1
dwParam3=0

No change

CallStateChangedEvent,
CH=C1, State=Idle,
Cause=CtiCauseNoError,
Reason=Direct, Calling=A,
Called=NP, OrigCalled=NP,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=IDLE
dwParam2=0
dwParam3=0

No change
A-26
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Refer and Replaces Scenarios

In-Dialog Refer - Referrer in Cisco Unified Communications Manager Cluster

Table A-12 describes the message sequences for the Refer and Replaces scenario of in-dialog refer
where referer is in Cisco Unified Communications Manager cluster.

1. dwParam2 get set to DISCONNECTMODE_FACCMC if the extension version on the line is set to at least
0x00050000. Otherwise, dwParam2 get set to DISCONNECTMODE_UNAVAIL.

Table A-12 Message Sequences for In-Dialog Refer - Referrer in Cisco Unified Communications
Manager Cluster

Actions
CallState/CallInfo
@Referrer (A)

CallState/CallInfo
@Referree (B)

CallState/CallInfo
@Refer-to-Target (C)

Referrer (A), Referee (B), and
Refer-to-Target (C) exist in
Cisco Unified Communications
Manager cluster, and CTI is
monitoring those lines

A-->B has a call in
connected state. The call
party information at A
should be {calling=A,
called=B, LRP=null,
origCalled=B,
reason=direct}

TAPI CallInfo
dwCallerID = A
dwCalledID = B
dwRedirectingID = null
dwRedirectionID = null
dwConnectedID = B
dwReason = Direct
dwOrigin =LINECALL
ORIGIN_INTERNAL

A-->B has a call in
connected state. The call
party information at B
should be {calling=A,
called=B, LRP=null,
origCalled=B,
reason=direct}

TAPI CallInfo
dwCallerID = A
dwCalledID = B
dwRedirectingID = null
dwRedirectionID = null
dwConnectedID = A
dwReason = Direct
dwOrigin = LINECALL
ORIGIN_INTERNAL
A-27
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
In-Dialog Refer Where ReferToTarget Redirects the Call in Offering State

Table A-13 describes the message sequences for the Refer and Replaces scenario of in-dialog refer
where ReferToTarget redirects the call in Offering state.

(A) initiates REFER (B) to (C) A gets LINECALLSTATE_
UNKNOWN | CLDSMT_
CALL_WAITING_STATE
with extended reason =
REFER

TAPI CallInfo
dwCallerID = A
dwCalledID = B
dwRedirectingID = null
dwRedirectionID = null
dwConnectedID = B
dwReason = Direct
dwOrigin =LINECALL
ORIGIN_INTERNAL

NewCallEvent should be
{calling=B, called=C,
LRP=A, origCalled=C,
reason=REFER}

LINECALLSTATE_OFFER
ING

TAPI CallInfo
dwCallerID = B
dwCalledID = C
dwRedirectingID = A
dwRedirectionID = C
dwConnectedID = “”
dwReason =LINECALL
REASON_UNKNOWN
with extended REFER
dwOrigin = LINECALL
ORIGIN_INTERNAL

C answers the call, and Refer is
successful

LINECALLSTATE_IDLE
with extended REFER
reason

CallPartyInfoChangedEvent
@ B with {calling=B,
called=C, LRP=A,
origCalled=C,
reason=REFER}

TAPI callInfo
dwCallerID = B
dwCalledID = B
dwRedirectingID = A
dwRedirectionID = C
dwConnectedID = C
dwReason = DIRECT
dwOrigin = LINECALL
ORIGIN_INTERNAL

LINECALLSTATE_CONN
ECTED

TAPI callInfo
dwCallerID = B
dwCalledID = C
dwRedirectingID = A
dwRedirectionID = C
dwConnectedID = B
dwReason = LINECALL
REASON_UNKNOWN
with extended REFER
dwOrigin = LINECALL
ORIGIN_INTERNAL

Table A-12 Message Sequences for In-Dialog Refer - Referrer in Cisco Unified Communications
Manager Cluster (continued)

Actions
CallState/CallInfo
@Referrer (A)

CallState/CallInfo
@Referree (B)

CallState/CallInfo
@Refer-to-Target (C)
A-28
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Table A-13 Message Sequences for In-Dialog Refer Where ReferToTarget Redirects the Call in
Offering State

Actions
CallState/CallInfo
@Referrer (A)

CallState/CallInfo
@Referree (B)

CallState/CallInfo
@Refer-to-Target (C)

Referrer (A), Referee (B), and
Refer-to-Target (C) exist in
Cisco Unified Communications
Manager cluster, and CTI is
monitoring those lines

A-->B has a call in
connected state. The call
party information at A
should be {calling=A,
called=B, LRP=null,
origCalled=B,
reason=direct}

TAPI CallInfo
dwCallerID = A
dwCalledID = B
dwRedirectingID = null
dwRedirectionID = null
dwConnectedID = B
dwReason = Direct
dwOrigin = LINECALL
ORIGIN_INTERNAL

A-->B has a call in
connected state. The call
party information at B
should be {calling=A,
called=B, LRP=null,
origCalled=B,
reason=direct}

TAPI CallInfo
dwCallerID = A
dwCalledID = B
dwRedirectingID = null
dwRedirectionID = null
dwConnectedID = A
dwReason = Direct
dwOrigin = LINECALL
ORIGIN_INTERNAL
A-29
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
In-Dialog Refer Where Refer Fails or Refer to Target is Busy

Table A-14 describes the message sequences for the Refer and Replaces scenario of in-dialog refer fails
or refer to target is busy.

(A) initiates REFER (B) to (C) A gets LINECALLSTATE_
UNKNOWN | CLDSMT_
CALL_WAITING_STATE
with extended reason =
REFER

TAPI CallInfo
dwCallerID = A
dwCalledID = B
dwRedirectingID = null
dwRedirectionID = null
dwConnectedID = B
dwReason = Direct
dwOrigin = LINECALL
ORIGIN_INTERNAL

B gets CPIC with (calling =
B, called = C, ocdpn=C, LRP
= A, reason = REFER, call
state = Ringback)

TAPI CallInfo
dwCallerID = B
dwCalledID = C
dwRedirectingID = A
dwRedirectionID = C
dwConnectedID = null
dwReason = Direct
dwOrigin = LINECALL
ORIGIN_INTERNAL

NewCallEvent should be
{calling=B, called=C,
LRP=A, origCalled=C,
reason=REFER}

LINECALLSTATE_OFFER
ING

TAPI callInfo
dwCallerID = B
dwCalledID = C
dwRedirectingID = A
dwRedirectionID = C
dwConnectedID = null
dwReason = LINECALL
REASON_UNKNOWN
with extended REFER
dwOrigin = LINECALL
ORIGIN_INTERNAL

C Redirects the call to D in
offering state, and D answers

LINECALLSTATE_IDLE
with extended reason =
REFER

(REFER considered as
successful when D answers)

CallPartyInfoChangedEvent
@ B with {calling=B,
called=D, LRP=C,
origCalled=C,
reason=Redirect}

Callstate = connected

TAPI callInfo
dwCallerID = B
dwCalledID = B
dwRedirectingID = C
dwRedirectionID = D
dwConnectedID = D
dwReason = DIRECT
dwOrigin = LINECALL
ORIGIN_INTERNAL

IDLE with reason = Redirect

TAPI
LINECALLSTATE_IDLE

D will get NewCallEvent
with reason = Redirect call
info same as B’s call info.
(calling=B, called=D, ocdpn
= C, LRP = C, reason =
redirect)

Offering/accepted/connecte
d

Table A-13 Message Sequences for In-Dialog Refer Where ReferToTarget Redirects the Call in
Offering State (continued)

Actions
CallState/CallInfo
@Referrer (A)

CallState/CallInfo
@Referree (B)

CallState/CallInfo
@Refer-to-Target (C)
A-30
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Table A-14 Message Sequences for In-Dialog Refer Where Refer Fails or Refer to Target is Busy

Actions
CallState/CallInfo
@Referrer (A)

CallState/CallInfo
@Referree (B)

CallState/CallInfo
@Refer-to-Target (C)

Referrer (A), Referee (B,) and
Refer-to-Target (C) exist in
Cisco Unified Communications
Manager cluster, and CTI is
monitoring those lines

A-->B has a call in
connected state. The call
party information at A
should be {calling=A,
called=B, LRP=null,
origCalled=B,
reason=direct}

TAPI CallInfo
dwCallerID = A
dwCalledID = B
dwRedirectingID = null
dwRedirectionID = null
dwConnectedID = B
dwReason = Direct
dwOrigin = LINECALL
ORIGIN_INTERNAL

A-->B has a call in
connected state. The call
party information at B
should be {calling=A,
called=B, LRP=null,
origCalled=B,
reason=direct}

TAPI CallInfo
dwCallerID = A
dwCalledID = B
dwRedirectingID = null
dwRedirectionID = null
dwConnectedID = A
dwReason = Direct
dwOrigin = LINECALL
ORIGIN_INTERNAL

(A) initiates REFER (B) to (C) A gets LINECALLSTATE_
UNKNOWN | CLDSMT_
CALL_WAITING_STATE
with extended reason =
REFER

TAPI CallInfo
dwCallerID = A
dwCalledID = B
dwRedirectingID = null
dwRedirectionID = null
dwConnectedID = B
dwReason = Direct
dwOrigin = LINECALL
ORIGIN_INTERNAL

No change

C is busy / C does not answer A gets LINECALLSTATE_
CONNECTED with
extended reason = REFER

(REFER considered as
failed)

If B goes to ringback when
call is offered to C (C does
not answer finally) it should
also receive Connected Call
State and CPIC event

TAPI CallInfo
dwCallerID = A
dwCalledID = B
dwRedirectingID = null
dwRedirectionID = null
dwConnectedID = A
dwReason = Direct
dwOrigin = LINECALL
ORIGIN_INTERNAL
A-31
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Out-of-Dialog Refer

Table A-15 describes the message sequences for the Refer and Replaces scenario of out-of-dialog refer.

Table A-15 Message Sequences for Out-of-Dialog Refer

Actions
CallState/CallInfo
@Referrer (A)

CallState/CallInfo
@Referree (B)

CallState/CallInfo
@Refer-to-Target (C)

Referrer (A), Referee (B), and
Refer-to-Target (C) exist in
Cisco Unified Communications
Manager cluster, and CTI is
monitoring those lines

There is no preexisting call
between A and B.

There is no preexisting call
between A and B.

A initiates REFER B to (C) B should get NewCallEvent
with call info as {calling=A,
called=B, LRP=null,
origCalled=B,
reason=REFER}

TAPI CallInfo
dwCallerID = A
dwCalledID = B
dwRedirectingID = null
dwRedirectionID = null
dwConnectedID = A
dwReason = LINECALL
REASON_ UNKNOWN
with extended REFER
dwOrigin =LINECALL
ORIGIN_EXTERNAL
A-32
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Invite with Replace for Confirmed Dialog

Table A-16 describes the message sequences for the Refer and Replaces scenario of invite with replace
for confirmed dialog. Here, A, B, and C exist inside Cisco Unified Communications Manager. A
confirmed dialog occurs between A and B. C initiates Invite to A with replace B's dialog ID.

B answers Call state = connected
(media does not flow
between A and B when call
goes to connected state)

TAPI CallInfo (no change)

Cisco Unified Communications
Manager redirects the call to C

CallPartyInfoChangedEvent
@ B with {calling=B,
called=C, LRP=A,
origCalled=C,
reason=REFER}

TAPI callInfo
dwCallerID = B
dwCalledID = B
dwRedirectingID = A
dwRedirectionID = C
dwConnectedID = C
dwReason = LINECALL
REASON_ UNKNOWN
with extended REFER
dwOrigin = LINECALL
ORIGIN_EXTERNAL

NewCallEvent should be
{calling=B, called=C,
LRP=A, origCalled=C,
reason=REFER} This info is
exactly same as though
caller (A) performed
REDIRECT operation
(except the reason is
different here).

TAPI callInfo
dwCallerID = B
dwCalledID = C
dwRedirectingID = A
dwRedirectionID = C
dwConnectedID = B
dwReason = LINECALL
REASON_ UNKNOWN
with extended REFER
dwOrigin = LINECALL
ORIGIN_INTERNAL

Table A-15 Message Sequences for Out-of-Dialog Refer (continued)

Actions
CallState/CallInfo
@Referrer (A)

CallState/CallInfo
@Referree (B)

CallState/CallInfo
@Refer-to-Target (C)
A-33
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Refer with Replace for All in Cluster

Table A-17 describes the message sequences for the Refer and Replaces scenario of refer with replace
for all in cluster. Here, a confirmed dialog exists between A and B and A and C. A initiates Refer to C
with replace B’s dialog ID.

Table A-16 Message Sequences for Invite with Replace for Confirmed Dialog

Actions
CallState/CallInfo
@Referrer (A)

CallState/CallInfo
@Referree (B)

CallState/CallInfo
@Refer-to-Target (C)

Confirmed dialog occurs
between A and B

Call State = connected,
Caller=A,
Called=B,
Connected=B,
Reason =direct,
gcid = GC1

Call State = connected
Caller=A,
Called=B,
Connected=A,
Reason =direct,
gcid = GC1

C Invites A by replacing B’s
dialog

NewCall at C gcid = GC2,
reason=REPLACEs,
Call state = Dialing,
Caller=C,
Called=null,
Reason = REPLACEs

Cisco Unified Communications
Manager joins A and C in a call
and disconnects call leg @ B

GCID Changed to GC2,
Reason = REPLACEs

CPIC Caller = C,
Called = A,
ocdpn = A,
LRP = B
Reason = REPLACEs

Callstate = connected

TAPI callinfo
caller=C,
called=B,
connected=C,
redirecting=B,
redirection=A,
reason=DIRECT with
extended REPLACEs,
callID=GC2

Call State = IDLE,
extended reason =
REPLACEs

CPIC changed

Caller = C,
Called = A,
ocdpn = A,
LRP = B,
Reason=REPLACEs

CallState = connected

TAPI callinfo
Caller=C,
Called=A,
Connected=A,
Redirecting=B,
Redirection=A,
reason=UNKNOWN with
extended REPLACEs,
callID=GC2
A-34
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Refer with Replace for All in Cluster, Replace Dialog Belongs to Another Station

Table A-17 describes the message sequences for the Refer and Replaces scenario of refer with replace
for all in cluster, where replace dialog belongs to another station. In this scenario:

A is Referrer, D is Referee, and C is Refer-to-Target.

A confirmed dialog exists between A(d1) and B & C(d2) and D.

A initiates Refer to D on (d1) with Replaces (d2).

Table A-17 Message Sequences for Refer with Replace for All in Cluster

Actions
CallState/CallInfo
@Referrer (A)

CallState/CallInfo
@Referree (B)

CallState/CallInfo
@Refer-to-Target (C)

Dialog between A and B and
dialog between A and C

Call State = onhold,
GC1,
Caller=A,
Called=C,
Connected=C,
Reason =direct

CallState = connected,
GC2,
Caller = A,
Called = B,
Connected=B,
Reason =direct

Call State = connected
Caller=A,
Called=B,
Connected=A,
Reason =direct,
gcid = GC2

Call State = connected
Caller=A,
Called=C,
Connected=A,
Reason =direct,
gcid = GC1

A completes Refer to C
replacing A->B’s dialog (B is
referred to target)

From CTI (callState = IDLE
with reason = TRANSFER)

TAPI call state IDLE with
Reason = DIRECT with
extended reason
TRANSFER

GCID changed from
CTI reason = TRANSFER

CPIC Changed from CTI
Caller=B,
Called=C,
Origcalled = C,
LRP=A,
Reason=TRANSFER

TAPI callinfo
Caller=B,
Called=B,
Connected = C,
Redirecting=A,
Redirection=C,
Reason = DIRECT with
extended reason
TRANSFER.
CallId=GC1

CPIC Changed from CTI
with Caller=B,
Called=C,
Origcalled = C,
LRP=A,
Reason=TRANSFER

TAPI callinfo caller=B,
called=C, connected=B,
redirecting=A,
redirection=C, reason=direct
with extended TRANSFER.
callId=GC1
A-35
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
3XX
Application monitors B.

Table A-18 Message Sequences for Refer with Replace for All in Cluster, Replace Dialog Belongs to Another Station

Actions
CallState/CallInfo
@Referrer (A)

CallState/CallInfo
@B

CallState/CallInfo
@Refer-to-Target (C)

CallState/CallInfo
@Referree (D)

Dialog between A and
B and dialog between C
and D

Call State = onhold,

Caller=A,
Called=B,
Connected=B,
Reason =direct,
gcid=GC1

Call State = connected

Caller=A,
Called=B,
Connected=A,
Reason =direct,
gcid = GC1

Call State = connected

Caller=C,
Called=D,
Connected=D,
Reason =direct,
gcid = GC2

Call State = connected

Caller=C,
Called=D,
Connected=C,
Reason =direct,
gcid = GC2

A initiates Refer to D
on (d1) with Replaces
(d2)

From CTI
(callState = IDLE with
reason = REFER)

TAPI call state IDLE
with reason = DIRECT
with extended reason =
REFER

CPIC Changed from
CTI Caller=B,
Called=C,
Origcalled = D,
LRP=C,
Reason=REPLACEs

TAPI callinfo
Caller=B,
Called=B,
Connected = D,
Redirecting=C,
Redirection=D,
Reason=DIRECT with
extended REPLACEs,
CallId=GC1

From CTI
(callState = IDLE with
reason = REPLACEs.)

TAPI call state IDLE
with reason = DIRECT
with extended reason =
REPLACEs

GCID changed from
CTI to GC1

CPIC Changed from
CTI with
Caller=B (referee),
Called=D,
Origcalled = D,
LRP=C,
Reason=REPLACEs

TAPI callinfo
caller=B,
called=D,
connected=B,
redirecting=C,
redirection=D,
reason=DIRECT with
extended REPLACEs,
callId=GC1

Table A-19 3XX

Actions
CallState/CallInfo
@Referrer (A)

CallState/CallInfo
@Referree (B)

CallState/CallInfo
@Refer-to-Target (C)

A calls external phone that is
running SIP, which has
CFDUNC set to B

TSPI:
LINE_APPNEWCALL

Reason = LINECALL
REASON_REDIRECT
A-36
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
SRTP

Media Terminate by Application (Open Secure CTI Port or RP)

 • Negotiate version

 • Sends LineOpen with extension version as 0x8007000

 • Send CciscoLineDevSpecificUserSetSRTPAlgorithmID

 • Send CCiscoLineDevSpecificUserControlRTPStream

 • Now, the CTI port or RP gets registered as secure port

 • Make call from secure IP phone to the CTI port or RP port

 • Answer the call from application

 • SRTP indication gets reported as LineDevSpecific event

 • SRTP key information get stored in LINECALLINFO::devSpecifc for retrieval

Media Terminate by TSP Wave Driver (open secure CTI port)

 • Negotiate version

 • Sends LineOpen with extension version as 0x4007000

 • Send CciscoLineDevSpecificUserSetSRTPAlgorithmID

 • Send CciscoLineDevSpecificSendLineOpen

 • Now, the CTI port gets registered as secure port

 • Make call from secure IP phone to the CTI port

 • Answer the call from application

 • SRTP indication gets reported as LineDevSpecific event

 • SRTP key information get stored in LINECALLINFO::devSpecifc for retrieval

Intercom
This configuration gets used for all the following use cases:

1. IPPhone A has two lines, line1 (1000) and line2 (5000). Line2 represents an intercom line. Speeddial
to 5001 with label ìAssistant_1î gets configured.

2. IPPhone B has three lines, line1 (1001), line2 (5001), and Line3 (5002). Line2 and Line3 represent
intercom lines. Speeddial to 5000 with label ìManager_1î gets configured on line2. Line 3 does not
have Speeddial configured for it.

3. IPPhone C has two lines, line1 (1002) and line2 (5003). 5003 represents an intercom line that is
configured with Speeddial to 5002 with label ìAssistant_5002î.

4. IPPhone D has one line (5004). 5004 represnts an intercom line.

5. CTIPort X has two lines, line1 (2000) and line2 (5555). Line2 represents an intercom line. Speedial
to 5001 gets configured with label ìAssistant_1î.

6. Intercom lines (5000 to 5003) exists in same partition = Intercom_Group_1 and they remain
reachable from each other. 5004 exists in Intercom_Group_2.
A-37
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
7. Application monitoring all lines on all devices.

Assumption: Application initialized and CTI provided the details on speeddial and lines with intercom
line on all the devices. Behavior should act the same for phones that are running SCCP, and those that
are running SIP.

Application Invoking Speeddial

Action Events

LineOpen on 5000 & 5001

Initiate InterCom Call on 5000

For 5000

receive LINE_CALLSTATE

 cbInst=x0

 param1=x03000000

 param2=x1, ACTIVE

 param3=x0,

Receive StartTransmission event

For 5001

receive LINE_CALLSTATE

 cbInst=x0

 param1= x03000000

 param2=x1, ACTIVE

 param3=x0,

Receive StartReception event

Receive zipzip tone with reason as intercom
A-38
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Agent Invokes Talkback

Change the SpeedDial

Table 1:

Action Events

Continuing from the previous use case, 5001 initiates
LineTalkBack from application on the InterCom call

For 5000

receive LINE_CALLSTATE

 device=x10218

 param1=x100, CONNECTED

 param2=x1, ACTIVE

 param3=x0,

Receive StartReception event

For 5001

receive LINE_CALLSTATE

 device=x101f6

 cbInst=x0

 param1=x100, CONNECTED

 param2=x1, ACTIVE

 param3=x0,

Receive StartTransmission event

Action Events

Open line 5000

LineChangeSpeeddial request (speeddial to 5003,
label = “Assistant_5003”)

The new speed dial and label is successfully set for the intercom
line

Receive LineSpeeddialChangeEvent from CTI

Send LINE_DEVSPECIFIC to indicate that speeddial and label
changed

Application issues LIneGetDevCaps to retrieve
speeddial/label that is set on the line

TAPI returns configured speeddial/label that is configured on the
line.
A-39
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Secure Conferencing

Conference with All Parties as Secure

The conference bridge includes security profile. MOH is not configured. A, B, and C get registered as
Encrypted.

Action CTI Messages TAPI Messages TAPI Structures

A calls B;
B answers
the call

Party A

CallStateChangedEvent,
CH=C1, GCH=G1,
Calling=A, Called=B,
OrigCalled=B, LR=NP,
State=Connected,
Origin=OutBound,
Reason=Direct

SecurityStaus=
NotAuthenticated

CtiCallSecurityStatusUpdate

LH = A, CH = C1

SecurityStaus= Encrypted

LINE_CALLDEVSPECIFIC
hDevice=A
dwCallbackInstance=0
dwParam1=
SLDSMT_LINECALLINFO_DEVSPECIFICDATA
dwParam2=SLDST_CALL_SECURITY_STATUS
dwParam3=0

LINECALLINFO
(hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=A
dwCalledID=B
dwConnectedID=B
dwRedirectionID=NP
dwRedirectingID=NP

Devspecific Data :

CallSecurityInfo =
Encrypted

Party B

CallStateChangedEvent,
CH=C2, GCH=G1,
Calling=A, Called=B,
OrigCalled=B, LR=NP,
State=Connected,
Origin=OutBound,
Reason=Direct

SecurityStaus=NotAuthentic
ated

CtiCallSecurityStatusUpdate

LH = B, CH = C2

SecurityStaus= Encrypted

LINE_CALLDEVSPECIFIC
hDevice=B
dwCallbackInstance=0
dwParam1=
SLDSMT_LINECALLINFO_DEVSPECIFICDATA
dwParam2=SLDST_CALL_SECURITY_STATUS
dwParam3=0

LINECALLINFO
(hCall-1)
hLine=B
dwCallID=T1
dwOrigin=INTERNAL
dwReason=DIRECT
dwCallerID=A
dwCalledID=B
dwConnectedID=A
dwRedirectionID=NP
dwRedirectingID=NP

Devspecific Data :

CallSecurityInfo =
Encrypted

B does
lineSetUp
Conferenc
e

Party B
A-40
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
CtiCallSecurityStatusUpdate

LH = B, CH = C2

SecurityStaus=
NotAuthenticated

LINE_CALLDEVSPECIFIC
hDevice=B
dwCallbackInstance=0
dwParam1=
SLDSMT_LINECALLINFO_DEVSPECIFICDATA
dwParam2=SLDST_CALL_SECURITY_STATUS
dwParam3=0

LINECALLINFO
(hCall-1)
hLine=B
dwCallID=T1
dwOrigin=INTERNAL
dwReason=DIRECT
dwCallerID=A
dwCalledID=B
dwConnectedID=A
dwRedirectionID=NP
dwRedirectingID=NP

Devspecific Data :

CallSecurityInfo =
NotAuthenticated

B calls C;
C answers
the call

Party B

CallStateChangedEvent,
CH=C3, GCH=G2,
Calling=A, Called=B,
OrigCalled=B, LR=NP,
State=Connected,
Origin=OutBound,
Reason=Direct

SecurityStaus=NotAuthentic
ated

CtiCallSecurityStatusUpdate

LH = B, CH = C3

SecurityStaus= Encrypted

LINE_CALLDEVSPECIFIC
hDevice=B
dwCallbackInstance=0
dwParam1=
SLDSMT_LINECALLINFO_DEVSPECIFICDATA
dwParam2=SLDST_CALL_SECURITY_STATUS
dwParam3=0

LINECALLINFO
(hCall-1)
hLine=B
dwCallID=T2
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=B
dwCalledID=C
dwConnectedID=C
dwRedirectionID=NP
dwRedirectingID=NP

Devspecific Data :

CallSecurityInfo =
Encrypted

Party C

CallStateChangedEvent,
CH=C4, GCH=G2,
Calling=B, Called=C,
OrigCalled=C, LR=NP,
State=Connected,
Origin=OutBound,
Reason=Direct
SecurityStaus=
NotAuthenticated

CtiCallSecurityStatusUpdate

LH = C, CH = C4

SecurityStaus= Encrypted

LINE_CALLDEVSPECIFIC
hDevice=C
dwCallbackInstance=0
dwParam1=
SLDSMT_LINECALLINFO_DEVSPECIFICDATA
dwParam2=SLDST_CALL_SECURITY_STATUS
dwParam3=0

LINECALLINFO
(hCall-1)
hLine=C
dwCallID=T2
dwOrigin=INTERNAL
dwReason=DIRECT
dwCallerID=B
dwCalledID=C
dwConnectedID=B
dwRedirectionID=NP
dwRedirectingID=NP

Devspecific Data :

CallSecurityInfo =
Encrypted

Action CTI Messages TAPI Messages TAPI Structures
A-41
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Hold or Resume in Secure Conference

Conference bridge includes security profile. MOH gets configured. A, B, and C represent secure phones
and exist in conference with overall call security status as secure.

B
completes
conf

Party B

CtiCallSecurityStatusUpdate

LH = B, CH = C2

SecurityStaus= Encrypted

LINE_CALLDEVSPECIFIC
hDevice=B
dwCallbackInstance=0
dwParam1=
SLDSMT_LINECALLINFO_DEVSPECIFICDATA
dwParam2=SLDST_CALL_SECURITY_STATUS
dwParam3=0

LINECALLINFO
(hCall-1)
hLine=B
dwCallID=T1
dwOrigin=CONFEREN
CE
dwReason=UNKNOWN
dwCallerID=NP
dwCalledID=NP
dwConnectedID=NP

dwRedirectionID=NP
dwRedirectingID=NP

Devspecific Data :

CallSecurityInfo =
Encrypted

Action CTI Messages TAPI Messages TAPI Structures

Action CTI Messages TAPI Messages TAPI Structures

A does
lineHold

Party A

CtiCallSecurityStatusUpdate,

LH = A, CH = C1,

SecurityStaus=
NotAuthenticated

LINE_CALLDEVSPECIFIC
hDevice=A
dwCallbackInstance=0
dwParam1=
SLDSMT_LINECALLINFO_DEVSPECIFICDAT
A
dwParam2=SLDST_CALL_SECURITY_STATUS
dwParam3=0

LINECALLINFO (hCall-1)
hLine=A
dwCallID=T1
dwOrigin=CONFERENCE
dwReason=UNKNOWN
dwCallerID=NP
dwCalledID=NP
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionID=NP

Devspecific Data :
CallSecurityInfo =
NotAuthenticated

Party B
A-42
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
CtiCallSecurityStatusUpdate,

LH = B, CH = C2,

SecurityStaus=
NotAuthenticated

LINE_CALLDEVSPECIFIC
hDevice=B
dwCallbackInstance=0
dwParam1=
SLDSMT_LINECALLINFO_DEVSPECIFICDAT
A
dwParam2=SLDST_CALL_SECURITY_STATUS
dwParam3=0

LINECALLINFO (hCall-1)
hLine=B
dwCallID=T1
dwOrigin=CONFERENCE
dwReason=UNKNOWN
dwCallerID=NP
dwCalledID=NP
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionID=NP

Devspecific Data :
CallSecurityInfo =
CtiCallSecurityStatusUpdat
e,

LH = A, CH = C1,

SecurityStaus=
NotAuthenticated

Party C

CtiCallSecurityStatusUpdate,

LH = A, CH = C1,

SecurityStaus=
NotAuthenticated

LINE_CALLDEVSPECIFIC
hDevice=C
dwCallbackInstance=0
dwParam1=
SLDSMT_LINECALLINFO_DEVSPECIFICDAT
A
dwParam2=SLDST_CALL_SECURITY_STATUS
dwParam3=0

LINECALLINFO (hCall-1)
hLine=
dwCallID=T1
dwOrigin=CONFERENCE
dwReason=UNKNOWN
dwCallerID=NP
dwCalledID=NP
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionID=NP

Devspecific Data :
CallSecurityInfo =
NotAuthenticated

A does
lineResu
me

Party A

CtiCallSecurityStatusUpdate,

LH = A, CH = C1,

SecurityStaus= Encrypted

LINE_CALLDEVSPECIFIC
hDevice=A
dwCallbackInstance=0
dwParam1=
SLDSMT_LINECALLINFO_DEVSPECIFICDAT
A
dwParam2=SLDST_CALL_SECURITY_STATUS
dwParam3=0

LINECALLINFO (hCall-1)
hLine=A
dwCallID=T1
dwOrigin=CONFERENCE
dwReason=UNKNOWN
dwCallerID=NP
dwCalledID=NP
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionID=NP

Devspecific Data :
CallSecurityInfo =
Encrypted

Action CTI Messages TAPI Messages TAPI Structures
A-43
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Party B

CtiCallSecurityStatusUpdate,

LH = B, CH = C2,

SecurityStaus= Encrypted

LINE_CALLDEVSPECIFIC
hDevice=B
dwCallbackInstance=0
dwParam1=
SLDSMT_LINECALLINFO_DEVSPECIFICDAT
A
dwParam2=SLDST_CALL_SECURITY_STATUS
dwParam3=0

LINECALLINFO (hCall-1)
hLine=B
dwCallID=T1
dwOrigin=CONFERENCE
dwReason=UNKNOWN
dwCallerID=NP
dwCalledID=NP
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionID=NP

Devspecific Data :
CallSecurityInfo =
Encrypted

Party C

CtiCallSecurityStatusUpdate,

LH = C, CH = C4,

SecurityStaus= Encrypted

LINE_CALLDEVSPECIFIC
hDevice=C
dwCallbackInstance=0
dwParam1=
SLDSMT_LINECALLINFO_DEVSPECIFICDAT
A
dwParam2=SLDST_CALL_SECURITY_STATUS
dwParam3=0

LINECALLINFO (hCall-1)
hLine=
dwCallID=T1
dwOrigin=CONFERENCE
dwReason=UNKNOWN
dwCallerID=NP
dwCalledID=NP
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectionID=NP

Devspecific Data :
CallSecurityInfo =
Encrypted

Action CTI Messages TAPI Messages TAPI Structures
A-44
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Monitoring and Recording

Monitoring a Call

A (agent) and B (customer) get connected. BIB on A gets set to on.

Action CTI Messages TAPI Messages TAPI Structures

Party C

C(supervisor)
issues start
monitoring req
with A’s
permanentLin
eID as input

NewCallEvent, CH=C3,
GCH=G2, Calling=C,
Called=NP,
OrigCalled=NP,
LR=NP, State=Dialtone,
Origin=OutBound,
Reason=Direct

LINE_CALLINFO
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=ORIGIN
dwParam2=0
dwParam3=0

LINE_CALLINFO
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=REASON, CALLERID
dwParam2=0
dwParam3=0

LINECALLINFO (hCall-1)
hLine=C
dwCallID=T2
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=C
dwCalledID=NP
dwConnectedID=NP
dwRedirectionID=NP
dwRedirectingID=NP

 A’s BIB
automatically
answers

Party C

CallStateChangedEvent,
CH=C3,
State=Connected,
Cause=CauseNoError,
Reason=Direct,
Calling=C, Called=A,
OrigCalled=A, LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=CONNECTED
dwParam2=ACTIVE
dwParam3=0

LINECALLINFO (hCall-1)
hLine=C
dwCallID=T2
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=C
dwCalledID=A
dwConnectedID=A
dwRedirectionID=NP
dwRedirectingID=NP

Party A

MonitoringStartedEvent,

CH = C1

LINE_CALLDEVSPECIFIC

hDevice=hCall-1
dwCallbackInstance=0

dwParam1 =
SLDSMT_MONITOR_STARTED

dwParam2=0
dwParam3=0

LINECALLINFO (hCall-2)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=B
dwCalledID=A
dwConnectedID=B
dwRedirectionID=NP
dwRedirectingID=NP

Party C
A-45
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
LineCallAttributeInfoEv
ent,

CH=C3, Type = 2
(MonitorCall_Target),

CI = C1,

Address=A’s DN,
Partition=A’s Partition,
DeviceName = A’s
Name

LINE_CALLDEVSPECIFIC

hDevice=hCall-1
dwCallbackInstance=0

dwParam1 =
SLDSMT_LINECALLINFO_DEVSPEC
IFICDATA

dwParam2=SLDST_CALL_ATTRIBUT
E_INFO
dwParam3=0

LINECALLINFO (hCall-1)
hLine=C
dwCallID=T2
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=C
dwCalledID=A
dwConnectedID=A
dwRedirectionID=NP
dwRedirectingID=NP

DevSpecifc Data:

Type:
CallAttribute_SilentMonitorCall_Tar
get,

CI = C1,

DN = A’s DN,

 Partition = A’s Partition,

DeviceName = A’s Name

Party A

LineCallAttributeInfoEv
ent,

CH=C1, Type = 1
(MonitorCall),

CI = C3

Address=C’s DN,
Partition=C’s Partition,
DeviceName = C’s
Name

LINE_CALLDEVSPECIFIC

hDevice=hCall-1
dwCallbackInstance=0

dwParam1 =
SLDSMT_LINECALLINFO_DEVSPEC
IFICDATA

dwParam2=SLDST_CALL_ATTRIBUT
E_INFO
dwParam3=0

LINECALLINFO (hCall-1)
hLine=A
dwCallID=T1
dwOrigin=INTERNAL
dwReason=DIRECT
dwCallerID=B
dwCalledID=A
dwConnectedID=B
dwRedirectionID=NP
dwRedirectingID=NP

DevSpecifc Data:

Type:CallAttribute_SilentMonitorCal
l,

CI = C3

DN = C’s DN,

 Partition = C’s Partition,

DeviceName = C’s Name

C drops the
call

Party C

CallStateChangedEvent,
CH=C3, State=Idle,
Cause=CauseNoError,
Reason=Direct,
Calling=C, Called=A,
OrigCalled=A, LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=IDLE
dwParam2=0
dwParam3=0

Action CTI Messages TAPI Messages TAPI Structures
A-46
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Automatic Recording

Recording type on A (agent Phone) is configured as Automatic. D is configured as a Recorder Device.

Party A

MonitoringEndedEvent,

CH = C1

LINE_CALLDEVSPECIFIC

hDevice=hCall-1
dwCallbackInstance=0

dwParam1 =
SLDSMT_MONITOR_ENDED

dwParam2= DisconnectMode_Normal
dwParam3=0

Action CTI Messages TAPI Messages TAPI Structures

Action CTI Messages TAPI Messages TAPI Structures

A recieves
a call from
B, and A
answers the
call

Recording
session gets
established
between the
agent
phone and
the recorder

Party A

CallStateChangedEvent,
CH=C1, State=Connected,
Cause=CauseNoError,
Reason=Direct, Calling=B,
Called=A, OrigCalled=A,
LR=NP

LINE_CALLSTATE
hDevice=hCall-1
dwCallbackInstance=0
dwParam1=CONNECTED
dwParam2=ACTIVE
dwParam3=0

LINECALLINFO
(hCall-1)
hLine=A
dwCallID=T1
dwOrigin=INTERNAL
dwReason=DIRECT
dwCallerID=B
dwCalledID=A
dwConnectedID=B
dwRedirectionID=NP
dwRedirectingID=NP
A-47
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Application-Controlled Recording

A (C1) and B (C2) connect. Recording Type on A gets configured as ‘Application Based’. D gets
configured as a Recorder Device.

RecordingStartedEvent,

CH = C1

LINE_CALLDEVSPECIFIC

hDevice=hCall-1
dwCallbackInstance=0

dwParam1 = SLDSMT_RECORDING_STARTED

dwParam2=0
dwParam3=0

LINECALLINFO
(hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=B
dwCalledID=A
dwConnectedID=B
dwRedirectionID=NP
dwRedirectingID=NP

LineCallAttributeInfoEvent

CH = C1, Type = 3
(Automatic Recording),
Address = D’s DN, Partition
= D’s Partition, DeviceName
= D’s Name

LINE_CALLDEVSPECIFIC

hDevice=hCall-1
dwCallbackInstance=0

dwParam1 =
SLDSMT_LINECALLINFO_DEVSPECIFICDATA

dwParam2=SLDST_CALL_ATTRIBUTE_INFO
dwParam3=0

LINECALLINFO
(hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=B
dwCalledID=A
dwConnectedID=B
dwRedirectionID=NP
dwRedirectingID=NP

DevSpecifc Data:

Type: App Controlled
Recording,

DN = D’s DN,

 Partition = D’s Partition,

DeviceName = D’s Name

Action CTI Messages TAPI Messages TAPI Structures
A-48
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Action CTI Messages TAPI Messages TAPI Structures

A issues
start
recording
request

Recording
session
gets
established
between
the agent
phone and
the
recorder

Party A

RecordingStartedEvent,

CH = C1

LINE_CALLDEVSPECIFIC

hDevice=hCall-1
dwCallbackInstance=0

dwParam1 = SLDSMT_RECORDING_STARTED

dwParam2=0
dwParam3=0

LINECALLINFO
(hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=B
dwCalledID=A
dwConnectedID=B
dwRedirectionID=NP
dwRedirectingID=NP
A-49
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Conference Enhancements

Noncontroller Adding Parties to Conferences

A,B, and C exist in a conference that A created.

LineCallAttributeInfoEvent

CH = C1, Type = 4 (App
Controlled Recording),
Address = D’s DN, Partition
= D’s Partition,
DeviceName = D’s Name

LINE_CALLDEVSPECIFIC

hDevice=hCall-1
dwCallbackInstance=0

dwParam1 =
SLDSMT_LINECALLINFO_DEVSPECIFICDAT
A

dwParam2=SLDST_CALL_ATTRIBUTE_INFO
dwParam3=0

LINECALLINFO
(hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=B
dwCalledID=A
dwConnectedID=B
dwRedirectionID=NP
dwRedirectingID=NP

DevSpecifc Data:

Type: App Controlled
Recording,

DN = D’s DN,

 Partition = D’s Partition,

DeviceName = D’s
Name

A issues
stop
monitoring
request

RecordingEndedEvent,

CH = C1

LINE_CALLDEVSPECIFIC

hDevice=hCall-1
dwCallbackInstance=0

dwParam1 = SLDSMT_RECORDING_ENDED

dwParam2= DisconnectMode_Normal
dwParam3=0

LINECALLINFO
(hCall-1)
hLine=A
dwCallID=T1
dwOrigin=OUTBOUND
dwReason=DIRECT
dwCallerID=B
dwCalledID=A
dwConnectedID=B
dwRedirectionID=NP
dwRedirectingID=NP

Action CTI Messages TAPI Messages TAPI Structures
A-50
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Action Events

A,B, and C exist in a conference At A:

Conference – Caller=”A”, Called=”B”, Connected=”B”

Connected

Conference – Caller=”A”, Called=”C”, Connected=”C”

At B:

Conference – Caller=”A”, Called=”B”, Connected=”A”

Connected

Conference – Caller=”B”, Called=”C”, Connected=”C”

At C:

Conference – Caller=”B”, Called=”C”, Connected=”B”

Connected

Conference – Caller=”C”, Called=”A”, Connected=”A”
A-51
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
C issues a linePrepareAddToConference
to D

At A:

Conference – Caller=”A”, Called=”B”, Connecgted=”B”

Connected

Conference – Caller=”A”, Called=”C”, Connecgted=”C”

At B:

Conference – Caller=”A”, Called=”B”, Connecgted=”A”

Connected

Conference – Caller=”B”, Called=”C”, Connecgted=”C”

At C:

Conference – Caller=”B”, Called=”C”, Connecgted=”B”

OnHoldPendConf

Conference – Caller=”C”, Called=”A”, Connecgted=”A”

Connected - Caller=”C”, Called=”D”, Connecgted=”D”

At D:

Connected - Caller=”C”, Called=”D”, Connecgted=”C”

C issues a lineAddToConference to D At A:

Conference – Caller=”A”, Called=”B”, Connecgted=”B”

Connected

Conference – Caller=”A”, Called=”C”, Connecgted=”C”

Conference – Caller=”A”, Called=”D”, Connecgted=”D”

At B:

Conference – Caller=”A”, Called=”B”, Connecgted=”A”

Connected

Conference – Caller=”B”, Called=”C”, Connecgted=”C”

Conference – Caller=”B”, Called=”D”, Connecgted=”D”

At C:

Conference – Caller=”B”, Called=”C”, Connecgted=”B”

Connected

Conference – Caller=”C”, Called=”A”, Connecgted=”A”

Conference – Caller=”C”, Called=”D”, Connecgted=”D”

At D:

Conference – Caller=”C”, Called=”D”, Connecgted=”C”

Connected

Conference – Caller=”D”, Called=”A”, Connecgted=”A”

Conference – Caller=”D”, Called=”B”, Connecgted=”B”

Action Events
A-52
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Chaining Two Ad Hoc Conferences by Using Join
A-53
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Table 2:

Actions TSP CallInfo

A calls B, B answers, then B initiates
conference to C, C answers, and B
completes the conference

At A:

GCID-1

CONNECTED : Caller = Unknown

 Caller = Unknown

CONFERENCED : Caller = A

 Called = B

CONFERENCED : Caller = A

 Called = C

At B:

GCID-1

CONNECTED : Caller = Unknown

 Caller = Unknown

CONFERENCED : Caller = A

 Called = B

CONFERENCED : Caller = B

 Called = C

At C:

GCID-1

CONNECTED : Caller = Unknown

 Caller = Unknown

CONFERENCED : Caller = B

 Called = C

CONFERENCED : Caller = C

 Called = A
A-54
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
C initiates or completes conference to D
and E

No Change for A and B

At C:

- First conference

GCID-1

ONHOLD : Caller = Unknown

 Caller = Unknown

CONFERENCED : Caller = A

 Called = B

CONFERENCED : Caller = A

 Called = C

- Second conference

GCID-2

CONNECTED : Caller = Unknown

 Caller = Unknown

CONFERENCED : Caller = C

 Called = D

CONFERENCED : Caller = C

 Called = E

At D:

GCID-2

CONNECTED : Caller = Unknown

 Caller = Unknown

CONFERENCED : Caller = C

 Called = D

CONFERENCED : Caller = D

 Called = E

At E:

GCID-2
CONNECTED : Caller = Unknown

 Caller = Unknown

CONFERENCED : Caller = C

 Called = E

CONFERENCED : Caller = E

 Called = D

Table 2:

Actions TSP CallInfo
A-55
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
C initiates JOIN request to join to
conference call together, with GCID as
the primary call

At A:

GCID-1
CONNECTED : Caller = Unknown

 Caller = Unknown

CONFERENCED : Caller = A

 Called = B

CONFERENCED : Caller = A

 Called = C

CONFERENCED : Caller = A

 Called = Conference-2

At B :

GCID-1

CONNECTED : Caller = Unknown

 Caller = Unknown

CONFERENCED : Caller = A

 Called = B

CONFERENCED : Caller = B

 Called = C

CONFERENCED : Caller = B

 Called = Conference-2

At C:

- First conference

GCID-1

CONNECTED : Caller = Unknown

 Caller = Unknown

CONFERENCED : Caller = B

 Called = C

CONFERENCED : Caller = C

 Called = A

CONFERENCED : Caller = C

 Called = Conference-2

Table 2:

Actions TSP CallInfo
A-56
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Calling Party IP Address

Basic Call

TAPI application monitors party B

Party A represents an IP phone

A calls B

IP Address of A is available to TAPI application that is monitoring party B

Consultation Transfer

TAPI application monitors party C

Party B represents an IP phone

A talks to B

B intiates a consultation transfer call to C

IP Address of B is available to TAPI application that is monitoring party C.

B Completes the transfer

At D:

GCID-2

CONNECTED : Caller = Unknown

 Caller = Unknown

CONFERENCED : Caller = D

 Called = E

CONFERENCED : Caller = D

 Called = Conference-1

At E :

GCID-2

CONNECTED : Caller = Unknown

 Caller = Unknown

CONFERENCED : Caller = E

 Called = D

CONFERENCED : Caller = E

 Called = Conference-1

Table 2:

Actions TSP CallInfo
A-57
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Calling IP address of A is not available to TAPI application that is monitoring party C (not a supported
scenario).

Consultation Conference

TAPI application monitors party C

Party B represents an IP phone

A talks to B

B initiates a consultation conference call to C

IP Address of B is available to TAPI application that is monitoring party C.

B Completes the conference

Calling IP address of A and B is not available to TAPI application that is monitoring party C (not a
supported scenario)

Redirect

TAPI application monitors party B and party C

Party A represents an IP phone

A calls B

IP Address of A is available to TAPI application that is monitoring party B

Party A redirects B to party C

Calling IP address is not available to TAPI application that is monitoring party B (not a supported
scenario)

Calling IP address B is available to TAPI application that is monitoring party C

Click to Conference
Third-party conference gets created by using click-2-conference feature:

Action Events

Use Click-to-Call to create call from A to B, and B
answers

For A:

CONNECTED

reason = DIRECT

Calling = A, Called = B, Connected = B

For B:

CONNECTED

reason = DIRECT

Calling = A, Called = B, Connected = A
A-58
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Use Click-2-Conference feature to add C into
conference, and C answers

For A:

CONNECTED

reason = DIRECT

ExtendedCallReason = DIRECT

CONFERENCED

Calling = A, Called = B, Connected = B

CONFERENCED

Calling = A, Called = C, Connected = C

For B:

CONNECTED

reason = DIRECT

ExtendedCallReason = DIRECT

CONFERENCED

Calling = A, Called = B, Connected = A

CONFERENCED

Calling =B, Called = C, Connected = C

For C

CONNECTED

Reason = UNKNOWN

ExtendedCallReason = ClickToConference

CONFERENCED

Calling = C, Called = A, Connected = A

CONFERENCED

Calling = C, Called = B, Connected = B

Action Events
A-59
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Creating Four-Party Conference by Using Click-2-Conference Feature

Action Events

Use Click-to-Call to create call from A to B For A:

CONNECTED

reason = DIRECT

Calling = A, Called = B, Connected = B

For B:

CONNECTED

reason = DIRECT

Calling = A, Called = B, Connected = A
A-60
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Use Click-2-Conference feature to add C into
conference

For A:

CONNECTED

reason = DIRECT

ExtendedCallReason = DIRECT

CONFERENCED

Calling = A, Called = B, Connected = B

CONFERENCED

Calling = A, Called = C, Connected = C

For B:

CONNECTED

reason = DIRECT

ExtendedCallReason = DIRECT

CONFERENCED

Calling = A, Called = B, Connected = A

CONFERENCED

Calling = C, Called = C, Connected = C

For C

CONNECTED

Reason = DIRECT

ExtendedCallReason = ClickToConference

CONFERENCED

Calling = C, Called = A, Connected = A

CONFERENCED

Calling = C, Called = B, Connected = B

Action Events
A-61
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Use Click-2-Conference feature to add party
D

For A:

CONNECTED

reason = DIRECT

ExtendedCallReason = DIRECT

CONFERENCED

Calling = A, Called = B, Connected = B

CONFERENCED

Calling = A, Called = C, Connected = C

CONFERENCED

Calling = A, Called = D, Connected = D

For B:

CONNECTED

reason = DIRECT

ExtendedCallReason = DIRECT

CONFERENCED

Calling = A, Called = B, Connected = A

CONFERENCED

Calling = B, Called = C, Connected = C

CONFERENCED

Calling = B, Called = D, Connected = D

For C

CONNECTED

Reason = UNKNOWN

ExtendedCallReason = ClickToConference

CONFERENCED

Calling = C, Called = A, Connected = A

CONFERENCED

Calling = C, Called = B, Connected = B

CONFERENCED

Calling = C, Called = D, Connected = D

For D

CONNECTED

Reason = UNKNOWN

ExtendedCallReason = ClickToConference

Action Events
A-62
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
CONFERENCED

Calling = D, Called = A, Connected = A

CONFERENCED

Calling = D, Called = B, Connected = B

CONFERENCED

Calling = D, Called = C, Connected = C

Action Events
A-63
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Drop Party by Using Click-2-Conference

Action Events

Conference gets created by using
Click-2-Conference feature to add C into
conference

For A:

CONNECTED

reason = DIRECT

ExtendedCallReason = DIRECT

CONFERENCED

Calling = A, Called = B, Connected = B

CONFERENCED

Calling = A, Called = C, Connected = C

For B:

CONNECTED

reason = DIRECT

ExtendedCallReason = DIRECT

CONFERENCED

Calling = A, Called = B, Connected = A

CONFERENCED

Calling = B, Called = C, Connected = C

For C

CONNECTED

Reason = UNKNOWN

ExtendedCallReason = ClickToConference

CONFERENCED

Calling = C, Called = A, Connected = A

CONFERENCED

Calling = C, Called = B, Connected = B
A-64
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Drop Entire Conference by Using Click-2-Conference Feature

Drop C from Click-2-Conference feature For A

CONNECTED

Reason = DIRECT

ExtendedCallReason = DIRECT

Calling = A, Called = B, Connected = B

For B

CONNECTED

Reason = DIRECT

ExtendedCallReason = DIRECT

Calling = A, Called = B, Connected = A

For C

IDLE

Action Events
A-65
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Conference gets created by using
Click-2-Conference feature to add C into
conference

For A:

CONNECTED

reason = DIRECT

ExtendedCallReason = DIRECT

CONFERENCED

Calling = A, Called = B, Connected = B

CONFERENCED

Calling = A, Called = C, Connected = C

For B:

CONNECTED

reason = DIRECT

ExtendedCallReason = DIRECT

CONFERENCED

Calling = A, Called = B, Connected = A

CONFERENCED

Calling = B, Called = C, Connected = C

For C

CONNECTED

Reason = UNKOWN

ExtendedCallReason = ClickToConference

CONFERENCED

Calling = C, Called = A, Connected = A

CONFERENCED

Calling = C, Called = B, Connected = B

Drop entire conference For A

IDLE

For B

IDLE

For C

IDLE
A-66
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Calling Party Normalization

Incoming Call from PSTN to End Point

Action CTI Messages TAPI Messages TAPI Structures

A Call gets offered from a PSTN
number
5551212/<SUBSCRIBER>
through a San Jose gateway to a
CCM end point 2000

CallStateChangedEvent,
UnModified Calling
Party=5551212, UnModified
Called Party=2000,
UnModified Original Called
Party=2000, Modified Calling
Party=5551212, Modified
Called Party=2000, Modified
Original Called Party=2000,
Globalized Calling party =
+14085551212, Calling Party
Number
Type=SUBSCRIBER, Called
Party Number
Type=UNKNOWN, Original
Called Party Number
Type,=UNKNOWN
State=Connected,
Origin=OutBound, Reason =
Direct

LINE_CALLSTATE =
CONNECTED

LINECALLINFO

Displayed Calling
Party=5551212, Displayed
Called Party=2000,
Displayed Redirection
Party=, Displayed
Redirected Party=,
Globalized Calling Party =
+14085551212, Calling
Party Number
Type=SUBSCRIBER,
Called Party Number
Type= UNKNOWN,
Redirection Party Number
Type=, Redirecting Party
Number Type=
A-67
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Incoming Call from National PSTN to CTI-Observed End Point

Incoming Call from International PSTN to CTI-Observed End Point

Action CTI Messages TAPI Messages TAPI Structures

A Call gets offered from a Dallas
PSTN number
5551212/<NATIONAL>
through a San Jose gateway to a
CCM end point 2000

CallStateChangedEvent,
UnModified Calling
Party=9725551212,
UnModified Called
Party=2000, UnModified
Original Called Party=2000,
Modified Calling
Party=9725551212, Modified
Called Party=2000, Modified
Original Called Party=2000,
Globalized Calling party =
+19725551212, Calling Party
Number Type=NATIONAL,
Called Party Number
Type=UNKNOWN, Original
Called Party Number
Type,=UNKNOWN
State=Connected,
Origin=OutBound, Reason =
Direct

LINE_CALLSTATE =
CONNECTED

LINECALLINFO

Displayed Calling
Party=9725551212,
Displayed Called
Party=2000, Displayed
Redirection Party=,
Displayed Redirected
Party=, Globalized
Calling Party =
+19725551212, Calling
Party Number
Type=NATIONAL,
Called Party Number
Type= UNKNOWN,
Redirection Party Number
Type=, Redirecting Party
Number Type=

Action CTI Messages TAPI Messages TAPI Structures
A-68
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Outgoing Call from CTI-Observed End Point to PSTN Number

A Call gets offered from a
PSTN number in India
22221111/<INTERNATIO
NAL> through a San Jose
gateway to a CCM end point
2000

CallStateChangedEvent,
UnModified Calling
Party=011914422221111,
UnModified Called Party=2000,
UnModified Original Called
Party=2000, Modified Calling
Party=011914422221111, Modified
Called Party=2000, Modified
Original Called Party=2000,
Globalized Calling party =
+914422221111, Calling Party
Number Type=INTERNATIONAL,
Called Party Number
Type=UNKNOWN, Original Called
Party Number Type,=UNKNOWN
State=Connected,
Origin=OutBound, Reason = Direct

LINE_CALLSTATE =
CONNECTED

LINECALLINFO

Displayed Calling
Party=011914422221111,
Displayed Called
Party=2000, Displayed
Redirection Party=,
Displayed Redirected
Party=, Globalized
Calling Party =
+914422221111, Calling
Party Number
Type=INTERNATIONA
L, Called Party Number
Type = UNKNOWN,
Redirection Party Number
Type=, Redirecting Party
Number Type=

Action CTI Messages TAPI Messages TAPI Structures

A Call gets initiated from a
CCM end point 2000
through a San Jose gateway
to a PSTN number
5551212/<NATIONAL>

CallStateChangedEvent,
UnModified Calling Party=2000,
UnModified Called Party=5551212,
UnModified Original Called
Party=5551212, Modified Calling
Party=2000, Modified Called
Party=5551212, Modified Original
Called Party=5551212, Globalized
Calling party = +14085551212,
Calling Party Number
Type=UNKNOWN, Called Party
Number Type=SUBSCRIBER,
Original Called Party Number
Type,=SUBSCRIBER
State=Connected,
Origin=OutBound, Reason = Direct

LINE_CALLSTATE =
CONNECTED

LINECALLINFO

Displayed Calling
Party=2000, Displayed
Called Party=5551212,
Displayed Redirection
Party=, Displayed
Redirected Party=,
Globalized Calling Party
= +14085551212, Calling
Party Number
Type=UNKNOWN,
Called Party Number
Type= SUBSCRIBER,
Redirection Party Number
Type=, Redirecting Party
Number Type=
A-69
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Outgoing Call from CTI-Observed End Point to National PSTN Number

Action CTI Messages TAPI Messages TAPI Structures

A Call gets initiated from a
CCM end point 2000
through a San Jose gateway
to a Dallas PSTN number
9725551212/<NATIONAL
>

CallStateChangedEvent,
UnModified Calling Party=2000,
UnModified Called
Party=9725551212, UnModified
Original Called Party=9725551212,
Modified Calling Party=2000,
Modified Called
Party=9725551212, Modified
Original Called Party=9725551212,
Globalized Calling party =
+19725551212, Calling Party
Number Type=UNKNOWN, Called
Party Number Type=NATIONAL,
Original Called Party Number
Type,=NATIONAL
State=Connected,
Origin=OutBound, Reason = Direct

LINE_CALLSTATE =
CONNECTED

LINECALLINFO

Displayed Calling
Party=2000, Displayed
Called
Party=9725551212,
Displayed Redirection
Party=, Displayed
Redirected Party=,
Globalized Calling Party
= +19725551212, Calling
Party Number
Type=UNKNOWN,
Called Party Number
Type= NATIONAL,
Redirection Party Number
Type=, Redirecting Party
Number Type=
A-70
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Outgoing Call from CTI-Observed End Point to International PSTN Number

Do Not Disturb–Reject

Application Enables DND-R on a Phone

Action CTI Messages TAPI Messages TAPI Structures

A Call gets initiated from a
CCM end point 2000 through
a San Jose gateway to a PSTN
number in India
914422221111/<INTERNAT
IONAL>

CallStateChangedEvent,
UnModified Calling
Party=2000, UnModified
Called
Party=011914422221111,
UnModified Original Called
Party=011914422221111,
Modified Calling
Party=2000, Modified Called
Party=011914422221111,
Modified Original Called
Party=011914422221111,
Globalized Calling party =
+914422221111, Calling
Party Number
Type=UNKNOWN, Called
Party Number
Type=INTERNATIONAL,
Original Called Party
Number
Type,=INTERNATIONAL
State=Connected,
Origin=OutBound, Reason =
Direct

LINE_CALLSTATE =
CONNECTED

LINECALLINFO

Displayed Calling
Party=2000, Displayed
Called
Party=011914422221111,
Displayed Redirection
Party=, Displayed Redirected
Party=, Globalized Calling
Party = +914422221111,
Calling Party Number
Type=UNKNOWN, Called
Party Number Type =
INTERNATIONAL,
Redirection Party Number
Type=, Redirecting Party
Number Type=

Action TAPI Messages TAPI Structures

Phone A enables
DND-Reject in the
admin pages

LINE_CALLDEVSPECIFIC
hDevice=C
dwCallbackInstance=0
dwParam1= SLDSMT_LINECALLINFO_DEVSPECIFICDATA
dwParam2=SLDST_DND_OPTION_STATUS
dwParam3=2
A-71
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Normal Feature Priority

Feature Priority - Emergency

Action TAPI Messages TAPI Structures

With Phone B DND-R
enabled, Phone A calls Phone
B with feature priority as
Normal

Party A

LINE_CALLSTATE = IDLE

Party B

No TAPI messages

Action TAPI Messages TAPI Structures

With Phone B DND-R
enabled, Phone A calls
Phone B with feature
priority as Emergency

Party A

LINE_CALLSTATE = CONNECTED

 dwParam1 = 0x00000100

 dwParam2 = 0x00000001

LINECALLINFO (hCall-1)
hLine=C
dwCallID=T2
dwOrigin=INTERNAL
dwCallerID=A
dwCalledID=B
dwRedirectionID=NP
dwRedirectingID=NP

Party B

LINE_CALLSTATE = CONNECTED

 dwParam1 = 0x00000100

 dwParam2 = 0x00000001

LINECALLINFO (hCall-1)
hLine=C
dwCallID=T2
dwOrigin=INTERNAL
dwCallerID=A
dwCalledID=B
dwRedirectionID=NP
dwRedirectingID=NP
A-72
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Shared Line Scenario for DND-R

Application Disables DND-R or Changes the Option for DND

Action TAPI Messages TAPI Structures

Phones B and B’
represents shared
lines. Phone B’ is
DND-R enabled but
not B. Phone A calls
Phone B with feature
priority normal

Party A

LINE_CALLSTATE = CONNECTED

 dwParam1 = 0x00000100

 dwParam2 = 0x00000001

LINECALLINFO (hCall-1)
hLine=C
dwCallID=T2
dwOrigin=INTERNAL
dwCallerID=A
dwCalledID=B
dwRedirectionID=NP
dwRedirectingID=NP

Party B

LINE_CALLSTATE = CONNECTED

 dwParam1 = 0x00000100

 dwParam2 = 0x00000001

LINECALLINFO (hCall-1)
hLine=C
dwCallID=T2
dwOrigin=INTERNAL
dwCallerID=A
dwCalledID=B
dwRedirectionID=NP
dwRedirectingID=NP

Party B’

LINE_CALLSTATE = CONNECTED

 dwParam1 = 0x00000100

 dwParam2 = 0x00000002

Action TAPI Messages TAPI Structures

Phone A changes from
DND-Reject to
DND-RingerOff.

LINE_CALLDEVSPECIFIC
hDevice=C
dwCallbackInstance=0
dwParam1= SLDSMT_LINECALLINFO_DEVSPECIFICDATA
dwParam2=SLDST_DND_OPTION_STATUS
dwParam3=1
A-73
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Join Across Lines

Setup

Line A on device A

Line B1 and B2 on device B

Line C on device C

Line D on device D

Line B1’ on device B1’, B1’ is a shared line with B1

Join Two Calls from Different Lines to B1

Action Expected Events

A B1 is HOLD For A

C B2 is connected LINE_CALLSTATE param1=x100,
CONNECTED Caller = A, Called = B1
Connected B1

For B1: LINE_CALLSTATE param1=x100,
HOLD Caller = A, Called = B1, Connected = A

For B2: LINE_CALLSTATE param1=x100,
CONNECTED Caller = C, Called = B2 ,
Connected = C

For C: LINE_CALLSTATE param1=x100,
CONNECTED Caller = C, Called = B2,
Connected = B2

For B1’: LINE_CALLSTATE param1=x100,
CONNECTED, INACTIVE Caller = A, Called =
B1, Connected = A

Application issues
lineDevSpecific(SLDST_JOIN) with the call on
B1 as survival call

For A

CONNECTED

CONFERENCED Caller=A, Called=B1,
Connected=B1

CONFERENCED Caller=A Called=C,
Connected=C

For B1

CONNECTED

CONFERENCED Caller=A, Called=B1,
Connected=A

CONFERENCED Caller=B1 Called=C,
Connected=C

For B2

Call will go IDLE
A-74
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Join Three Calls from Different Lines to B1

For C

CONNECTED

CONFERENCED Caller=C, Called=B2,
Connected=B1 (or A)

CONFERENCED Caller=C Called=A,
Connected=A (or B1)

For B1’

CONNECTED INACTIVE

CONFERENCED Caller=A, Called=B1,
Connected=A

CONFERENCED Caller=B1 Called=C,
Connected=C

Action Expected Events

Action Expected Events

A B1 is hold,

C B2 is hold

D B2 is connected For A:

LINE_CALLSTATE

param1=x100, CONNECTED Caller = A, Called
= B1 Connected B1

For B1:

LINE_CALLSTATE

param1=x100, HOLD Caller = A, Called = B1,
Connected = A

For B2:

LINE_CALLSTATE for call-1

param1=x100, HOLD Caller = C, Called = B2 ,
Connected = C

LINE_CALLSTATE for call-2

param1=x100, CONNECTED Caller = D, Called
= B2 , Connected = D

For C:

LINE_CALLSTATE

param1=x100, CONNECTED Caller = C, Called
= B2, Connected = B2

For D:

LINE_CALLSTATE

param1=x100, CONNECTED Caller = D, Called
= B2, Connected = B2
A-75
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
For B1’:

LINE_CALLSTATE

param1=x100, HOLD Caller = A, Called = B1,
Connected = A

Application issues
lineDevSpecific(SLDST_JOIN) with the call on
B1 as survival call

For A

CONNECTED

CONFERENCED Caller=A, Called=B1,
Connected=B1

CONFERENCED Caller=A Called=C,
Connected=C

CONFERENCED Caller=A Called=D,
Connected=D

For B1

CONNECTED

CONFERENCED Caller=A, Called=B1,
Connected=A

CONFERENCED Caller=B1 Called=C,
Connected=C

CONFERENCED Caller=B1 Called=D,
Connected=D

For B2

Call-1 and call-2 will go IDLE

For C

CONNECTED

CONFERENCED Caller=B1, Called=C,
Connected=B1

CONFERENCED Caller=C Called=A,
Connected=A

CONFERENCED Caller=C Called=D,
Connected=D

For D

CONNECTED

CONFERENCED Caller=B1, Called=C,
Connected=B1

CONFERENCED Caller=D Called=A,
Connected=A

CONFERENCED Caller=D Called=C,
Connected=C

For B1’

Action Expected Events
A-76
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Join Calls from Different Lines to B1 with Conference

CONNECTED INACTIVE

CONFERENCED Caller=A, Called=B1,
Connected=A

CONFERENCED Caller=B1 Called=C,
Connected=C

CONFERENCED Caller=B1 Called=D,
Connected=D

Action Expected Events

Action Expected Events

A,B1,C in conference where B1 is controller For A:

D B2 Connected

CONNECTED

CONFERENCED Caller=A, Called=B1,
Connected=A

CONFERENCED Caller=A Called=C,
Connected=C

For B1:

CONNECTED

CONFERENCED Caller=A, Called=B1,
Connected=A

CONFERENCED Caller=B1 Called=C,
Connected=C

For B2:

LINE_CALLSTATE for call-1

param1=x100, CONNECTED Caller = D, Called
= B2 , Connected = D

For C:

CONNECTED

CONFERENCED Caller=C, Called=A,
Connected=A

CONFERENCED Caller=B1 Called=C,
Connected=C

For D:

LINE_CALLSTATE

param1=x100, CONNECTED Caller = D, Called
= B2, Connected = B2

For B1’:

LINE_CALLSTATE

CONNECTED INACTIVE
A-77
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
CONFERENCED Caller=A, Called=B1,
Connected=A

CONFERENCED Caller=B1 Called=C,
Connected=C

Application issues
lineDevSpecific(SLDST_JOIN) with the call on
B1 as survival call

For A

CONNECTED

CONFERENCED Caller=A, Called=B1,
Connected=B1

CONFERENCED Caller=A Called=C,
Connected=C

CONFERENCED Caller=A Called=D,
Connected=D

For B1

CONNECTED

CONFERENCED Caller=A, Called=B1,
Connected=A

CONFERENCED Caller=B1 Called=C,
Connected=C

CONFERENCED Caller=B1 Called=D,
Connected=D

For B2

Call will go IDLE

For C

CONNECTED

CONFERENCED Caller=B1, Called=C,
Connected=B1

CONFERENCED Caller=C Called=A,
Connected=A

CONFERENCED Caller=C Called=D,
Connected=D

For D

CONNECTED

CONFERENCED Caller=B1, Called=C,
Connected=B1

CONFERENCED Caller=D Called=A,
Connected=A

CONFERENCED Caller=D Called=C,
Connected=C

For B1’

CONNECTED INACTIVE

Action Expected Events
A-78
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Join Two Calls from Different Lines to B1 while B1 is not Monitored by TAPI

CONFERENCED Caller=A, Called=B1,
Connected=A

CONFERENCED Caller=B1 Called=C,
Connected=C

CONFERENCED Caller=B1 Called=D,
Connected=D

Action Expected Events

Action Expected Events

A B1 is HOLD,

C B2 is connected For A:

LINE_CALLSTATE

 param1=x100, CONNECTED Caller = A,
Called = B1 Connected B1

For B2:

LINE_CALLSTATE

 param1=x100, CONNECTED Caller = C,
Called = B2 , Connected = C

For C:

LINE_CALLSTATE

 param1=x100, CONNECTED Caller = C,
Called = B2, Connected = B2

User issues join request from phone with the call
on B1 as survival call

For A

CONNECTED

CONFERENCED Caller=A, Called=B1,
Connected=B1

CONFERENCED Caller=A Called=C,
Connected=C

For B2

Call will go IDLE

For C

CONNECTED

CONFERENCED Caller=C, Called=B2,
Connected=B1 (or A)

CONFERENCED Caller=C Called=A,
Connected=A (or B1)
A-79
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Join Two Calls from Different Lines to B2

Action Expected Events

A B1 is HOLD,

C B2 is connected For A:

LINE_CALLSTATE

 param1=x100, CONNECTED Caller = A,
Called = B1 Connected B1

For B1:

LINE_CALLSTATE

 param1=x100, HOLD Caller = A, Called = B1,
Connected = A

For B2:

LINE_CALLSTATE

 param1=x100, CONNECTED Caller = C,
Called = B2 , Connected = C

For C:

LINE_CALLSTATE

 param1=x100, CONNECTED Caller = C,
Called = B2, Connected = B2

For B1’:

LINE_CALLSTATE

 param1=x100, HOLD Caller = A, Called = B1,
Connected = A

Application issues
lineDevSpecific(SLDST_JOIN) with the call on
B1 as survival call

For A

CONNECTED

CONFERENCED Caller=A, Called=B1,
Connected=B1

CONFERENCED Caller=A Called=C,
Connected=C

For B1

CONNECTED

CONFERENCED Caller=A, Called=B1,
Connected=A

CONFERENCED Caller=B1 Called=C,
Connected=C ??

For B2

Call will go IDLE

For C

CONNECTED
A-80
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts

CONFERENCED Caller=C, Called=B2,
Connected=B1 (or A)

CONFERENCED Caller=C Called=A,
Connected=A (or B1)

For B1’

CONNECTED INACTIVE

CONFERENCED Caller=A, Called=B1,
Connected=A

CONFERENCED Caller=B1 Called=C,
Connected=C

Action Expected Events

Action Expected Events

A B1 is HOLD, For A:

B1 issues setup conference

C B2 is connected

LINE_CALLSTATE

param1=x100, CONNECTED Caller = A, Called
= B1 Connected B1

For B1:

Primary call

LINE_CALLSTATE

CONNECTED

CONFERENCED Caller=A, Called=B1,
Connected=B1

Consult call

DIALTONE

For B2:

LINE_CALLSTATE

param1=x100, CONNECTED Caller = C, Called
= B2 , Connected = C

For C:

LINE_CALLSTATE

param1=x100, CONNECTED Caller = C, Called
= B2, Connected = B2

For B1’:

LINE_CALLSTATE

param1=x100, HOLD Caller = A, Called = B1,
Connected = A
A-81
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
B1 Performs a Join Across Line Where B1 is already in a Conference Created by A

Application issues
lineDevSpecific(SLDST_JOIN) with the call on
B2 as survival call

For A:

CONNECTED

CONFERENCED Caller=A, Called=B1,
Connected=B2

CONFERENCED Caller=A Called=C,
Connected=C

For B1

Both calls will go IDLE

For B2

CONNECTED

CONFERENCED Caller=B1, Called=A,
Connected=A

CONFERENCED Caller=C Called=B1,
Connected=C

For C

CONNECTED

CONFERENCED Caller=C, Called=B2,
Connected=B2 (or A)

CONFERENCED Caller=C Called=A,
Connected=A (or B2)

For B1’

Calls go IDLE

Action Expected Events

Action Expected Events

A, B1, C are in a conference created by A For A:

Conference – Caller=”A”, Called=”B1”,
Connected=”B1”

Connected

Conference – Caller=”A”, Called=”C”,
Connected=”C”

For B1:

Conference – Caller=”A”, Called=”B1”,
Connected=”A”

Connected

Conference – Caller=”B1”, Called=”C”,
Connected=”C”

For C:
A-82
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Conference – Caller=”B1”, Called=”C”,
Connected=”B1”

Connected

Conference – Caller=”C”, Called=”A”,
Connected=”A”

For A:

B2 calls D, D answers

Conference – Caller=”A”, Called=”B1”,
Connected=”B1”

Connected

Conference – Caller=”A”, Called=”C”,
Connected=”C”

For B1:

Conference – Caller=”A”, Called=”B1”,
Connected=”A”

OnHold

Conference – Caller=”B1”, Called=”C”,
Connected=”C”

For B2:

Connected - Caller=”B2”, Called=”D”,
Connected=”D”

For C:

Conference – Caller=”B1”, Called=”C”,
Connected=”B1”

Connected

Conference – Caller=”C”, Called=”A”,
Connected=”A”

Connected - Caller=”B2”, Called=”D”,
Connected=”B2”

B1 issues a lineDevSpecific(SLDST_JOIN) to
join the calls on B1 and B2.

For A:

Conference – Caller=”A”, Called=”B1”,
Connected=”B1”

Connected

Conference – Caller=”A”, Called=”C”,
Connected=”C”

Conference – Caller=”A”, Called=”D”,
Connected=”D”

For B1:

Conference – Caller=”A”, Called=”B1”,
Connected=”B1”

Action Expected Events
A-83
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
B2 Performs a Join Across Line Where B1 is already in a Conference Created by A

Conference – Caller=”A”, Called=”B1”,
Connected=”A”

Connected

Conference – Caller=”B1”, Called=”C”,
Connected=”C”

Conference – Caller=”B1”, Called=”D”,
Connected=”D”

For B2:

Call will go IDLE

For C:

Conference – Caller=”B1”, Called=”C”,
Connected=”B1”

Connected

Conference – Caller=”C”, Called=”A”,
Connected=”A”

Conference – Caller=”C”, Called=”D”,
Connected=”D”

For D:

Conference – Caller=”B1”, Called=”D”,
Connected=”B1”

Connected

Conference – Caller=”D”, Called=”A”,
Connected=”A”

Conference – Caller=”D”, Called=”C”,
Connected=”C”

Action Expected Events

Action Expected Events

A,B1,C are in a conference created by A For A:

Conference – Caller=”A”, Called=”B1”,
Connected=”B1”

Connected

Conference – Caller=”A”, Called=”C”,
Connected=”C”

For B1:

Conference – Caller=”A”, Called=”B1”,
Connected=”A”

Connected

Conference – Caller=”B1”, Called=”C”,
Connected=”C”

For C:
A-84
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Conference – Caller=”B1”, Called=”C”,
Connected=”B1”

Connected

Conference – Caller=”C”, Called=”A”,
Connected=”A”

B2 calls D, D answers For A:

Conference – Caller=”A”, Called=”B1”,
Connected=”B1”

Connected

Conference – Caller=”A”, Called=”C”,
Connected=”C”

For B1:

Conference – Caller=”A”, Called=”B1”,
Connected=”A”

OnHold

Conference – Caller=”B1”, Called=”C”,
Connected=”C”

For B2:

Connected - Caller=”B2”, Called=”D”,
Connected=”D”

For C:

Conference – Caller=”B1”, Called=”C”,
Connected=”B1”

Connected

Conference – Caller=”C”, Called=”A”,
Connected=”A”

For D:

Connected - Caller=”B2”, Called=”D”,
Connected=”B2”

B2 issues a lineDevSpecific(SLDST_JOIN) to
join the calls on B1 and B2.

For A:

Conference – Caller=”A”, Called=”B1”,
Connected=”B2”

Connected

Conference – Caller=”A”, Called=”C”,
Connected=”C”

Conference – Caller=”A”, Called=”D”,
Connected=”D”

For B1:

Conference – Caller=”A”, Called=”B1”,
Connected=”A”

Action Expected Events
A-85
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
B1 Performs a Join Across Line Where B1 is in One Conference and B2 is in a Separate Conference

Connected

Conference – Caller=”B1”, Called=”C”,
Connected=”C”

Conference – Caller=”B1”, Called=”D”,
Connected=”D”

For B2:

Call will go IDLE

For C:

Conference – Caller=”B2”, Called=”C”,
Connected=”B2”

Connected

Conference – Caller=”C”, Called=”A”,
Connected=”A”

Conference – Caller=”C”, Called=”D”,
Connected=”D”

For D:

Conference – Caller=”B2”, Called=”D”,
Connected=”B2”

Connected

Conference – Caller=”D”, Called=”A”,
Connected=”A”

Conference – Caller=”D”, Called=”C”,
Connected=”C”

Action Expected Events

Action Expected Events

A,B1,C are in conference1 For A (GCID-1):

D, B2, E are in conference2

Conference – Caller=”A”, Called=”B1”,
Connected=”B1”

Connected

Conference – Caller=”A”, Called=”C”,
Connected=”C”

For B1 (GCID-1):

Conference – Caller=”A”, Called=”B1”,
Connected=”A”

OnHold

Conference – Caller=”B1”, Called=”C”,
Connected=”C”

For C (GCID-1):
A-86
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Conference – Caller=”B1”, Called=”C”,
Connected=”B1”

Connected

Conference – Caller=”C”, Called=”A”,
Connected=”A”

For D (GCID-2):

Conference – Caller=”D”, Called=”B2”,
Connected=”B2”

Connected

Conference – Caller=”D”, Called=”E”,
Connected=”E”

For B2 (GCID-2):

Conference – Caller=”D”, Called=”B2”,
Connected=”D”

Connected

Conference – Caller=”B2”, Called=”E”,
Connected=”E”

For E (GCID-2):

Conference – Caller=”B2”, Called=”E”,
Connected=”B2”

Connected

Conference – Caller=”E”, Called=”D”,
Connected=”D”

B1 issues a lineDevSpecific(SLDST_JOIN) to
join the calls on B1 and B2.

For A:

Conference – Caller=”A”, Called=”B1”,
Connected=”B1”

Connected

Conference – Caller=”A”, Called=”C”,
Connected=”C”

Conference – Caller=”A”, Called=”CFB-2”,
Connected=” CFB-2”

For B1:

Conference – Caller=”A”, Called=”B1”,
Connected=”A”

Connected

Conference – Caller=”B1”, Called=”C”,
Connected=”C”

Conference – Caller=”B1”, Called=” CFB-2”,
Connected=” CFB-2”

For B2:

Action Expected Events
A-87
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
IPv6 Use Cases
The use cases related to IPv6 are provided below:

Call will go IDLE

For C:

Conference – Caller=”B1”, Called=”C”,
Connected=”B1”

Connected

Conference – Caller=”C”, Called=”A”,
Connected=”A”

Conference – Caller=”C”, Called=” CFB-2”,
Connected=” CFB-2”

For D:

Connected

Conference – Caller=”D”, Called=”E”,
Connected=”E”

conference – Caller=”D”, Called=” CFB-1”,
Connected=” CFB-1”

For E:

Connected

Conference – Caller=”E”, Called=”D”,
Connected=”D”

Conference – Caller=”E”, Called=” CFB-1”,
Connected=” CFB-1”

Action Expected Events
A-88
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Register CTI Port with IPv4 when Unified CM is IPv6 Disabled and Common Device Configuration is IPv4 .

Register CTI Port with IPv6 when Unified CM is IPv6 Disabled and Common Device Configuration is IPv6.

Steps Expected Result

1. Enterprise parameter for IPv6 is disabled. IP
addressing mode for CTI Port = IPv4 only on
common device config page.

2. Open provider and do a
LineNegotiateExtensionVersion with the
higher bit set on both dwExtLowVersion and
dwExtHighVersion

3. Application does a LineOpen with new Ext
ver. The lineopen will be delayed till user
specifies the Addressing mode

4. Application uses
CCiscoLineDevSpecificSetIPAddressMode
to set the addressing mode as IPv4.
Application uses
CciscoLineDevSpecificSendLineOpen to
trigger Lineopen.

Application is able to register CTI Port with IPv4
address.

Steps Expected Result

1. Enterprise parameter for IPv6 is disabled. IP
addressing mode for CTI Port = IPv6 only on
common device config page.

2. Open provider and do a
LineNegotiateExtensionVersion with the
higher bit set on both dwExtLowVersion and
dwExtHighVersion

3. Application does a LineOpen with new Ext
ver. The lineopen will be delayed till user
specifies the Addressing mode

4. Application uses
CCiscoLineDevSpecificSetIPAddressMode
to set the addressing mode as IPv6.
Application uses
CciscoLineDevSpecificSendLineOpen to
trigger Lineopen.

Application is not able to register CTI Port. TSP
returns error
LINEERR_OPERATIONUNAVAIL
A-89
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Register CTI Port with IPv6 when Unified CM is IPv6 Disabled and Common Device Configuration is IPv4_v6.

Steps Expected Result

1. Enterprise parameter for IPv6 is disabled. IP
addressing mode for CTI Port = IPv4_v6 on
common device config page.

2. Open provider and do a
LineNegotiateExtensionVersion with the
higher bit set on both dwExtLowVersion and
dwExtHighVersion

3. Application does a LineOpen with new Ext
ver. The lineopen will be delayed till user
specifies the Addressing mode

4. Application uses
CCiscoLineDevSpecificSetIPAddressMode
to set the addressing mode as IPv6.
Application uses
CciscoLineDevSpecificSendLineOpen to
trigger Lineopen.

Application is not able to register CTI Port. TSP
returns error
LINEERR_OPERATIONUNAVAIL
A-90
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
IPv6 Phone A calls IPv6 Phone B

Steps Expected Result

1. Enterprise parameter for IPv6 is enabled.

2. Open two lines A and B

3. Phone A which is IPv6 calls Phone B which
is IPv6

4. Events at Phone B

5. While Media is established:

 • Events on phone A

 • Event on phone B

FireCallState = Offering, Do a GetlineCallInfo.

LineCallInfo contains the following in
devspecific part,

FarEndIPAddress: Blank

FarEndIPAddressIpv6: IPv6 address of A

Do a GetLinecallInfo,

LineCallInfo contains the following in
devspecific part,

TransmissionRTPDestinationAddress = IPv6
address of B.

ReceptionRTPDestinationAddress = IPv6 address
of A.

Do a GetLinecallInfo,

LineCallInfo contains the following in
devspecific part,

TransmissionRTPDestinationAddress = IPv6
address of A.

ReceptionRTPDestinationAddress = IPv6 address
of B.
A-91
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
IPv4_v6 Phone calls IPv6 Phone.

Steps Expected Result

1. Enterprise parameter for IPv6 is enabled.

2. Open two lines A and B

3. Phone A which is IPv4_v6 calls Phone B
which is IPv6

4. Events at Phone B

5. While Media is established:

 • Events on phone A

 • Event on phone B

FireCallState = Offering, Do a GetlineCallInfo.

LineCallInfo contains the following in
devspecific part,

FarEndIPAddress: IPv4 address of A

FarEndIPAddressIpv6: IPv6 address of A

Do a GetLinecallInfo,

LineCallInfo contains the following in
devspecific part,

TransmissionRTPDestinationAddress = IPv6
address of B.

ReceptionRTPDestinationAddress = IPv6 address
of A.

Do a GetLinecallInfo,

LineCallInfo contains the following in
devspecific part,

TransmissionRTPDestinationAddress = IPv6
address of A.

ReceptionRTPDestinationAddress = IPv6 address
of B.
A-92
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
IPv4 Phone Calls IPv6 Phone.

Steps Expected Result

1. Enterprise parameter for IPv6 is enabled.

2. Open two lines A and B

3. Phone A which is IPv4 calls Phone B which
is IPv6

4. Events at Phone B

5. While Media is established:

 • Events on phone A

 • Event on phone B

FireCallState = Offering, Do a GetlineCallInfo.

LineCallInfo contains the following in
devspecific part,

FarEndIPAddress: IPv4 address of A

FarEndIPAddressIpv6:

Do a GetLinecallInfo,

LineCallInfo contains the following in
devspecific part,

TransmissionRTPDestinationAddress = IPv4
address of MTP Resource.

ReceptionRTPDestinationAddress = IPv4 address
of A.

Do a GetLinecallInfo,

LineCallInfo contains the following in
devspecific part,

TransmissionRTPDestinationAddress = IPv6
address of MTP Resource.

ReceptionRTPDestinationAddress = IPv6 address
of B.
A-93
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
IPv6 Phone Calls IPv4 Phone.

Steps Expected Result

1. Enterprise parameter for IPv6 is enabled.

2. Open two lines A and B

3. Phone A which is IPv6 only calls Phone B
which is IPv4

4. Events at Phone B

5. While Media is established:

 • Events on phone A

 • Event on phone B

FireCallState = Offering, Do a GetlineCallInfo.

LineCallInfo contains the following in
devspecific part,

FarEndIPAddress:

FarEndIPAddressIpv6: IPv6 address of A

Do a GetLinecallInfo,

LineCallInfo will contain the following in
devspecific part,

TransmissionRTPDestinationAddress = IPv6
address of MTP Resource.

ReceptionRTPDestinationAddress = IPv6 address
of A.

Do a GetLinecallInfo,

LineCallInfo contains the following in
devspecific part,

TransmissionRTPDestinationAddress = IPv4
address of MTP Resource.

ReceptionRTPDestinationAddress = IPv4 address
of B.
A-94
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
IPv6 Phone Calls IPv4_v6 Phone.

Common Device C onfiguration Device Mode Changes from IPv4_v6 to IPv4.

Steps Expected Result

1. Enterprise parameter for IPv6 is enabled.

2. Phone A which is IPv6 only calls Phone B
which is IPv4_v6 only.

3. Open lines A and B

4. Events at Phone B

5. While Media is established:

 • Events on phone A

 • Event on phone B

Existing Call, Do a GetlineCallInfo.

LineCallInfo contains the following in
devspecific part,

FarEndIPAddress:

FarEndIPAddressIpv6: IPv6 address of A

Do a GetLinecallInfo,

LineCallInfo contains the following in
devspecific part,

TransmissionRTPDestinationAddress = IPv6
address of MTP Resource.

ReceptionRTPDestinationAddress = IPv6 address
of A.

Do a GetLinecallInfo,

LineCallInfo contains the following in
devspecific part,

TransmissionRTPDestinationAddress = IPv6
address of Phone A.

ReceptionRTPDestinationAddress = IPv6 address
of B.

Steps Expected Result

User changes the device configuration on
common device configuration from IPv4_v6 to
IPv4 only

Application receives LineDevSpecific for the
opened CTI Ports/RP in the device config
indicating that Addressing mode has changed. All
lines registered as IPv6 get a LINE_CLOSE
Event. Application can then re-register these lines
later.
A-95
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Common Device Configuration Device Mode Changes from IPv4 to IPv6 .

Direct Transfer Across Lines
Use cases related to Direct Transfer Across Lines feature are mentioned below:

Note The device mentioned in the use cases also apply to SCCP device and SIP TNP phones when Direct
Transfer is issued from application.

Steps Expected Result

User changes the device configuration on
common device configuration from IPv4 only to
IPv6 only

Application receives LineDevSpecific for the
opened CTI Ports/RP in the device config
indicating that Addressing mode has changed. All
lines registered as IPv4 get a LINE_CLOSE
Event. Application can then re-register these lines
later.
A-96
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Direct Transfer across Lines on RoundTable Phones via Application

Device A, B, and C where B is roundtable phone and has line B1 and B2 configured.

Action Expected Events

A B1 is connected,

C B2 is on hold

For A:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = B1 Connected B1

For B1:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = B1, Connected = A

For B2:

LINE_CALLSTATE

 param1=x100, HOLD

 Caller = C, Called = B2 , Connected = C

For C:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = C, Called = B2, Connected = B2

Application sends
CciscoLineDevSpecificDirectTransfer on B1
with B2 as consult call

For A:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = B1 Connected C

For B1:

Call goes IDLE

For B2:

Call goes IDLE

For C:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = C, Called = B2, Connected = A
A-97
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Direct Transfer on Same Line on RoundTable Phones via Application

Device A, B, C where B is roundtable phone.

Action Expected Events

A B (c1) is connected,

C B (c2) is on hold

For A:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = B Connected B

For B:

Call-1

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = B, Connected = A

Call-2

LINE_CALLSTATE

 param1=x100, HOLD

 Caller = C, Called = B, Connected = C

For C:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = C, Called = B, Connected = B

Application sends
CciscoLineDevSpecificDirectTransfer on B (c1)
with c2 as consult call

For A:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = B Connected C

For B:

Call-1 and Call-2 will go IDLE

For C:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = C, Called = B, Connected = A
A-98
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Direct Transfer Across Lines on RoundTable Phones via Application with call in Offering State

Device A, B, C where B is roundtable phone and has line B1 and B2 configured.

Action Expected Events

A (c1) B1(c2) is on hold,

B2 (c3) C (c4) is ringing

For A:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = B1 Connected B1

For B1:

LINE_CALLSTATE

 param1=x100, HOLD

 Caller = A, Called = B1, Connected = A

For B2:

LINE_CALLSTATE

 param1=x100, RINGBACK

 Caller = B2, Called = C

For C:

LINE_CALLSTATE

 param1=x100, OFFERING

 Caller = B2, Called = C

Application sends
CciscoLineDevSpecificDirectTransfer on B1 (c2)
with B2 (c3) as consult call

For A:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = B Connected C

For B1:

Call goES IDLE

For B2:

Call goes IDLE

For C:

LINE_CALLSTATE

 param1=x100, OFFERING

 Caller = C, Called = B,
A-99
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Failure of Direct Transfer Calls Across Lines

Device A, B, C where B is roundtable phone and has line B1 and B2 configured.

Action Expected Events

A (c1) B1(c2) is on hold,

Initiate new call (c3) on B2

For A:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = B1 Connected B1

For B1:

LINE_CALLSTATE

 param1=x100, HOLD

 Caller = A, Called = B1, Connected = A

For B2:

LINE_CALLSTATE

 param1=x100, DIALTONE

Application sends
CciscoLineDevSpecificDirectTransfer on B1 (c2)
with B2 (c3) as consult call

CciscoLineDevSpecificDirectTransfer gets error
as LINEERR_INVALCALLSTATE.
A-100
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Direct Transfer Calls Across Lines in Conference Scenario

Device A, B, C, D and E where C is roundtable phone and has line C1 and C2 configured.

Action Expected Events

A/B/C1 in conference, B is controller, call on C1
is in hold state.

C2 /D/E in conference, D is controller, call on C2
is in connect state.

For A:

CONNECTED

CONFERENCED

Caller = A, called = B, connected = B

CONFERENCED

Caller = A, called = C1, connected = C1

For B:

CONNECTED

CONFERENCED

Caller = A, called = B, connected = B

CONFERENCED

Caller = B, called = C1, connected = C1

For C1:

ONHOLD

CONFERENCED

Caller = B, called = C1, connected = B

CONFERENCED

Caller = C1, called = A, connected = A

For C2:

CONNECTED

CONFERENCED

Caller = C2, called = D, connected = D

CONFERENCED

Caller = C2, called = E, connected = E

For D:

CONNECTED

CONFERENCED

Caller = D, called = C1, connected = C1

CONFERENCED

Caller = D, called = E, connected = E
A-101
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
For E:

CONNECTED

CONFERENCED

Caller = D, called = E, connected = D

CONFERENCED

Caller = E, called = C2, connected = C2

Application sends
CciscoLineDevSpecificDirectTransfer on C1
with C2-call as consult call

CciscoLineDevSpecificDirectTransfer will
succeed.

For A:

CONNECTED

CONFERENCED

Caller = A, called = B, connected = B

CONFERENCED

Caller = A, called = CB-2, connected = CB-2

For B:

CONNECTED

CONFERENCED

Caller = A, called = B, connected = B

CONFERENCED

Caller = B, called = CB-2, connected = CB-2

For C1:

IDLE

For C2:

IDLE

For D:

CONNECTED

CONFERENCED

Caller = D, called = CB-1, connected = CB-1

CONFERENCED

Caller = D, called = E, connected = E

For E:

CONNECTED

CONFERENCED

Caller = D, called = E, connected = D

CONFERENCED

Caller = E, called = CB-1, connected = CB-1

Action Expected Events
A-102
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Connect Transfer Across Lines on RoundTable Phones

Device A, B, C where B is roundtable phone and has line B1 and B2 configured.

Swap or Cancel Support
Use cases related to Swap or Cancel feature are mentioned below:

Action Expected Events

A B1 is connected,

C B2 is on hold

For A:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = B1 Connected B1

For B1:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = B1, Connected = A

For B2:

LINE_CALLSTATE

 param1=x100, HOLD

 Caller = C, Called = B2, Connected = C

For C:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = C, Called = B2, Connected = B2

User performs connect transfer on B. For A:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = B1 Connected C

For B1:

Call goes IDLE

For B2:

Call goes IDLE

For C:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = C, Called = B2, Connected = A
A-103
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Connected Transfer

Device A, B, C where A is a Cisco Unified IP Phone (future version)..

Action Expected Events

A C is on hold

A B is connected,

For A:

Call-1

LINE_CALLSTATE

 param1=x400, HOLD

 Caller = A, Called = C Connected C

Call-2

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = B Connected B

For B:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = C, Connected = A

A press transfer For A:

Call-2

LINE_CALLSTATE

 param1=x400, HOLD

 Caller = A, Called = B Connected B

Call-3 DIALTONE

A picks "Active Calls" Call-3 goes IDLE

A picks call (A C) and presses transfer to
complete transfer

For A:

Both calls go IDLE

For B1:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = B Connected C

For C:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = C, Connected = B
A-104
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Connected Transfer on Phones with Shared Lines

Device A, B, C, A' where A and A' are sharedline.
A-105
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Action Expected Events

A C is on hold

A B is connected,

For A:

Call-1

LINE_CALLSTATE

 param1=x400, HOLD

 Caller = A, Called = C Connected C

Call-2

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = B Connected B

For B:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = C, Connected = A

For A':

Call-1

LINE_CALLSTATE

 param1=x400, HOLD

 Caller = A, Called = C Connected C

Call-2

LINE_CALLSTATE

 param1=x100, CONNECTED_INACTIVE

 Caller = A, Called = B Connected B

User performs connected transfer on Cisco
Unified IP phone (future version)

For A and A':

All calls go IDLE

For B1:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = B Connected C

For C:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = C, Connected = B
A-106
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Connected Transfer: Initiate from Phone, Complete from CTI

Device A, B, C .

Action Expected Events

A C is on hold

A B is connected,

For A:

Call-1

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

 param1=x400, HOLD

 Caller = A, Called = C Connected C

For B:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = C, Connected = A

Application sends either CompleteTransfer or
DirectTransfer on A

For A and A':

All calls go IDLE

For B1:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = B Connected C

For C:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = C, Connected = B
A-107
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Consult Transfer: Resume Primary Call (Implicit Cancel).

Action Expected Events

A B

A setup consult transfers to C

And C answer

For A:

Call-1

LINE_CALLSTATE

 param1=x100,
ONHOLDPENDINGTRANSFER

 Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = C Connected C

For B:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = C, Connected = A

A press resume to resume A B call For A:

Call-1

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

 param1=x400, HOLD

 Caller = A, Called = C Connected C

For B:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = C, Connected = A
A-108
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Consult Transfer: Swap Calls.

Action Expected Events

A B

A setup consult transfer to C

And C answer

For A:

Call-1

LINE_CALLSTATE

 param1=x100,
ONHOLDPENDINGTRANSFER

 Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = C Connected C

For B:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = C, Connected = A

A press Swap For A:

The scenario will look exactly the same when
resume primary call.

Call-1

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

 param1=x400, HOLD

 Caller = A, Called = C Connected C
A-109
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
For B:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = C, Connected = A

A press "Transfer" to complete transfer For A:

Calls go IDLE

For B:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = B, Connected = C

For C:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = C, Connected = B

Action Expected Events
A-110
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Consult Transfer on Phone: Swap Calls; CTI sends SetupTransfer on Connected Call

Action Expected Events

A B

A setup consult transfer to C

And C answer

For A:

Call-1

LINE_CALLSTATE

 param1=x100,
ONHOLDPENDINGTRANSFER

 Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = C Connected C

For B:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = C, Connected = A
A-111
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
A press Swap For A:

The scenario will look exactly the same when
resume primary call.

Call-1

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

 param1=x400, HOLD

 Caller = A, Called = C Connected C

For B:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = C, Connected = A

Application calls LineSetupTransfer on A's
connected call (A B) to initiate transfer

Request succeeds as phone cancels existing
feature plan and allow CTI request to go through.

Action Expected Events
A-112
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Consult Transfer: Swap and Cancel

Action Expected Events

A B

A setup consult transfer to C

And C answer

For A:

Call-1

LINE_CALLSTATE

 param1=x100,
ONHOLDPENDINGTRANSFER

 Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = C Connected C

For B:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = C, Connected = A
A-113
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
A press Swap For A:

The scenario will look exactly the same when
resume primary call.

Call-1

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

 param1=x400, HOLD

 Caller = A, Called = C Connected C

For B:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = C, Connected = A

A presses Cancel No TSP event since it is handled during swap
operation

Action Expected Events
A-114
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
RoundTable Connected Conference.

Action Expected Events

A B

A puts call on hold

A creates new call to C, C answer

For A:

Call-1

LINE_CALLSTATE

 param1=x400, HOLD

 Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = C Connected C

For B:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = C, Connected = A
A-115
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
A presses "Conference" For A:

Call-1

LINE_CALLSTATE

 param1=x400, HOLD

 Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

 param1=x100,
ONHOLDPENDINGCONFENRENCE

 Caller = A, Called = C Connected C

Call-3

DIALTONE

 A picks active call (A C) on phone UI, and
presses "Conference" to complete the conference

For A:

CONNECTED

CONFERENCED

Caller=A, called = B, connected = B

CONFERENCED

Caller = A, called = C, connected = C

Call-3

IDLE

For B:

For A:

CONNECTED

CONFERENCED

Caller=A, called = B, connected = B

CONFERENCED

Caller = B, called = C, connected = C

For C:

For A:

CONNECTED

CONFERENCED

Caller=A, called = C, connected = C

CONFERENCED

Caller = C, called = B, connected = B

Action Expected Events
A-116
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
RoundTable Connected Conference: Cancel.

Action Expected Events

A B

A puts call on hold

A creates new call to C, C answers

For A:

Call-1

LINE_CALLSTATE

 param1=x400, HOLD

 Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = C Connected C

For B:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = C, Connected = A

A presses "Conference" For A:

Call-1

LINE_CALLSTATE

 param1=x400, HOLD

 Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

 param1=x100, CONFERENCED

 Caller = A, Called = C Connected C

Call-3

LINE_CALLSTATE

 param1=x100,
ONHOLDPENDINGCONFENRENCE

 Caller = A, Called = C Connected C

Call-4

DIALTONE
A-117
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
A picks "Active Calls" For A:

Call-2

LINE_CALLSTATE

 param1=x400, HOLD

 Caller = A, Called = C Connected C

Call-3 / Call-4

IDLE

 A presses Cancel softkey For A:

Call-1

LINE_CALLSTATE

 param1=x400, HOLD

 Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

 param1=x400, HOLD

 Caller = A, Called = C Connected C

For B:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = C, Connected = A

Action Expected Events
A-118
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Set Up Consult Conference from RT, then Swap and Complete Conference from RT.

Action Expected Events

A B

A sets up conference to C, C answer

For A:

ONHOLDPENDINGCONF

CONFERENCED

Caller = A, called = B, connected = B

CONNECTED

Caller = A, called = C, connected = C

For B:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = C, Connected = A
A-119
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
A presses "Swap" For A:

Call-1

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

 param1=x100, HOLD

 Caller = A, Called = C Connected C

A presses "Conference" to complete conference For A:

CONNECTED

CONFERENCED

Caller=A, called = B, connected = B

CONFERENCED

Caller = A, called = C, connected = C

For B:

CONNECTED

CONFERENCED

Caller=A, called = B, connected = B

CONFERENCED

Caller = B, called = C, connected = C

For C:

For A:

CONNECTED

CONFERENCED

Caller=A, called = C, connected = C

CONFERENCED

Caller = C, called = B, connected = B

Action Expected Events
A-120
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Set Up Consult Conference from RT, then Swap and Cancel from Phone with Shared Line Scenario

A and A’ are shared lines..

Action Expected Events

A B

A sets up conference to C, C answers

For A:

ONHOLDPENDINGCONF

CONFERENCED

Caller = A, called = B, connected = B

CONNECTED

Caller = A, called = C, connected = C

For A'

CONNECTED INACTIVE

Caller = A, celled = B, connected = B

CONNECTED INACTIVE

Caller = A, celled = C, connected = C

For B:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = C, Connected = A

A presses "Swap" For A:

The scenario looks the same when primary call
resumes

Call-1

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

 param1=x400, HOLD

 Caller = A, Called = C Connected C
A-121
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
A presses "Cancel" For A:

Call-1

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

 param1=x400, HOLD

 Caller = A, Called = C Connected = C

For A'

Call-1

LINE_CALLSTATE

 CONNECTED INACTIVE

 Caller = A, Called = B Connected = B

Call-2

LINE_CALLSTATE

 param1=x400, HOLD

 Caller = A, Called = C Connected = C

For B:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = C, Connected = A

Action Expected Events
A-122
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Set Up Consult Conference from RT: Resume Primary Call (Implicit Cancel).

Action Expected Events

A B

A sets up conference to C, C answer

For A:

ONHOLDPENDINGCONF

CONFERENCED

Caller = A, called = B, connected = B

CONNECTED

Caller = A, called = C, connected = C

For A'

CONNECTED INACTIVE

Caller = A, celled = B, connected = B

CONNECTED INACTIVE

Caller = A, celled = C, connected = C

For B:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = C, Connected = A
A-123
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
User is Removed from Standard Supports Connected Xfer/Conf Group.

User is Removed from Standard Supports Connected Xfer/Conf Group.

A resumes A B call For A:

Call-1

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = B Connected B

Call-2

LINE_CALLSTATE

 param1=x400, HOLD

 Caller = A, Called = C Connected C

For B:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = B, Connected = A

For C:

LINE_CALLSTATE

 param1=x100, CONNECTED

 Caller = A, Called = C, Connected = A

Action Expected Events

Action Expected Events

User is in Standard Supports Connected
Xfer/Conf group

RT phone A is in user's control list

Application does LineInitialize

RT PHONE/LINE is enumerated to APP

Remove user from "Standard Supports Connected
Xfer/Conf" user group

APP receives PHONE_REMOVE /
LINE_REMOVE

Action Expected Events

User is in Standard Supports Connected
Xfer/Conf group

RT phone A is in user's control list

Application does LineInitialize

RT PHONE/LINE is enumerated to APP

Remove user from Standard Supports Connected
Xfer/Conf user group

APP receives PHONE_REMOVE /
LINE_REMOVE
A-124
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
User is Removed from Standard Supports Connected Xfer/Conf Group while Line is Open.

User is Added to Standard Supports Connected Xfer/Conf Group.

Drop Any Party
Use cases related to Drop Any Party feature are mentioned below:

Action Expected Events

user is in "Standard Supports Connected
Xfer/Conf" group

RT phone A is in user's control list

Application does LineInitialize

RT PHONE/LINE is enumerated to APP

App sends LineOpen to open line on Cisco
Unified IP phone (future version) phone

Successful

Remove user from Standard Supports Connected
Xfer/Conf group

TSP sends LINE_CLOSE

APP receives LINE_REMOVE

Action Expected Events

user is not in "Standard Supports Connected
Xfer/Conf" group

RT phone A is in user's control list

Application does LineInitialize

RT PHONE/LINE is not enumerated to APP

Add user to Standard Supports Connected
Xfer/Conf group

APP receives PHONE_CREATE /
LINE_CREATE
A-125
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Conference: Unified CM Service Parameter Advanced Ad Hoc Conference Enabled = False.

Action Expected Events

A,B,C and D are in conference; B is conference
Controller.

Conference Model:

Each line in conference will be having 4 callLegs,
3 conferenced and 1 connected

CallLegs on A:

 Connected - to Conference Bridge

 Conferenced - (Connected Id - B)

 Conferenced - (Connected Id - C)

 Conferenced - (Connected Id - D)

CallLegs on B:

 Connected - to Conference Bridge

 Conferenced - (Connected Id - A)

 Conferenced - (Connected Id - C)

 Conferenced - (Connected Id - D)

CallLegs on C:

 Connected - to Conference Bridge

 Conferenced - (Connected Id - A)

 Conferenced - (Connected Id - B)

 Conferenced - (Connected Id - D)

CallLegs on D:

 Connected - to Conference Bridge

 Conferenced - (Connected Id - A)

 Conferenced - (Connected Id - B)

 Conferenced - (Connected Id - C)

Application does a LineOpen (B) with new Ext
ver.
A-126
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
1. Application does
LineRemoveFromConference on the
‘Conferenced’ callLeg on B which is
connected to A.

A is dropped out of conference.

CallLegs after the Party is dropped from
Conference:

Each line in conference will be having 4 callLegs,
2 Conferenced,1 IDLE and 1 connected

CallLegs on A:

 All 4 CallLegs will be in IDLE state

CallLegs on B:

 Connected - to Conference Bridge

 Conferenced - (Connected Id - C)

 Conferenced - (Connected Id - D)

 IDLE - (on the conferenced callLeg
which was connected to A)

CallLegs on C:

 Connected - to Conference Bridge

 IDLE - (on the conferenced callLeg
which was connected to A)

 Conferenced - (Connected Id - B)

 Conferenced - (Connected Id - D)

CallLegs on D:

 Connected - to Conference Bridge

 IDLE - (on the conferenced callLeg
which was connected to A)

 Conferenced - (Connected Id - B)

 Conferenced - (Connected Id - C)

Note All IDLE CallLegs will have
CallStateChange Reason as
CtiDropConferee.

Application does a LineOpen (A) with new Ext
ver.

2. Application does
LineRemoveFromConference on the
‘Conferenced’ callLeg on A which is
connected to B.

Error Message
LINEERR_OPERATIONUNAVAIL will be sent
to application

Action Expected Events
A-127
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Conference - Unified CM Service Parameter Advanced Ad Hoc Conference Enabled = True’

Action Expected Events

A,B,C and D are in conference; B is conference
Controller.

Conference Model:

Each line in conference will be having 4 callLegs,
3 conferenced and 1 connected

CallLegs on A:

 Connected - to Conference Bridge

 Conferenced - (Connected Id - B)

 Conferenced - (Connected Id - C)

 Conferenced - (Connected Id - D)

CallLegs on B:

 Connected - to Conference Bridge

 Conferenced - (Connected Id - A)

 Conferenced - (Connected Id - C)

 Conferenced - (Connected Id - D)

CallLegs on C:

 Connected - to Conference Bridge

 Conferenced - (Connected Id - A)

 Conferenced - (Connected Id - B)

 Conferenced - (Connected Id - D)

CallLegs on D:

 Connected - to Conference Bridge

 Conferenced - (Connected Id - A)

 Conferenced - (Connected Id - B)

 Conferenced - (Connected Id - C)

Application does a LineOpen (A) with new Ext
ver.

Application does LineRemoveFromConference
on the ‘Conferenced’ callLeg on A which is
connected to B.
A-128
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
1. Drop Ad Hoc Conference = Never B is dropped out of conference.

CallLegs after the Party is dropped from
Conference:

Each line in conference will be having 4 callLegs,
2 Conferenced,1 IDLE and 1 connected

CallLegs on B:

 All 4 CallLegs will be in IDLE state

CallLegs on A:

 Connected - to Conference Bridge

 Conferenced - (Connected Id - C)

 Conferenced - (Connected Id - D)

 IDLE - (on the conferenced callLeg
which was connected to B)

CallLegs on C:

 Connected - to Conference Bridge

 IDLE - (on the conferenced callLeg
which was connected to B)

 Conferenced - (Connected Id - A)

 Conferenced - (Connected Id - D)

CallLegs on D:

 Connected - to Conference Bridge

 IDLE - (on the conferenced callLeg
which was connected to B)

 Conferenced - (Connected Id - A)

 Conferenced - (Connected Id - C)

Note All IDLE CallLegs will have
CallStateChange Reason as
CtiDropConferee.

2. Drop Ad Hoc Conference = ‘When
Conference Controller Leaves’

B is dropped out of conference and Conference
will be ended.

CallLegs after the Party is dropped from
Conference:

Each line in conference will be having 4 callLegs,
all in IDLE state

CallLegs on A,B,C and D:

 All 4 CallLegs will be in IDLE state

Action Expected Events
A-129
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Shared Line-Scenario

Action Expected Events

A,B,C and A' are in conference; A is conference
Controller

Unified CM Parameter "Drop Ad Hoc Conference
= Never"

Conference Model:

Lines B and C in conference will be having 4
callLegs, 3 conferenced and 1 connected

Lines A and A' will be having 8 CallLegs

CallLegs on A:

Connected - to Conference Bridge (Active)

Conferenced - (caller Id - A ;Called Id - B;
Connected Id - B) (Active)

Conferenced - (caller Id - A ;Called Id - C;
Connected Id - C) (Active)

Conferenced - (caller Id - A ;Called Id - A' ;
Connected Id - A') (Active)

Connected - to Conference Bridge (Remote in
Use)

Conferenced - (caller Id - A' ;Called Id - B;
Connected Id - B) (Remote in Use)

 Conferenced - (caller Id - A' ;Called Id - C;
Connected Id - C) (Remote in Use)

Conferenced - (caller Id - A' ;Called Id - A;
Connected Id - A) (Remote in Use)

CallLegs on A':

Connected - to Conference Bridge (Active)

Conferenced - (caller Id - A' ;Called Id - B;
Connected Id - B) (Active)

Conferenced - (caller Id - A' ;Called Id - C;
Connected Id - C) (Active)

Conferenced - (caller Id - A' ;Called Id - A;
Connected Id - A) (Active)

Connected - to Conference Bridge (Remote in
Use)

Conferenced - (caller Id - A ;Called Id - B;
Connected Id - B) (Remote in Use)

Conferenced - (caller Id - A ;Called Id - C;
Connected Id - C) (Remote in Use)

Conferenced - (caller Id - A ;Called Id - A';
Connected Id - A') (Remote in Use)
A-130
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
CallLegs on B:

Connected - to Conference Bridge

Conferenced - (caller Id - B ;Called Id - A;
Connected Id - A)

Conferenced - (caller Id - B ;Called Id - C;
Connected Id - C)

Conferenced - (caller Id - B ;Called Id - A';
Connected Id - A')

CallLegs on C:

Connected - to Conference Bridge

Conferenced - (caller Id - C ;Called Id - A;
Connected Id - A)

Conferenced - (caller Id - C ;Called Id - B;
Connected Id - B)

Conferenced - (caller Id - C ;Called Id - A' ;
Connected Id - A')

Application does a LineOpen (A) with new Ext
ver.

Unified CM Parameter ‘Advanced Ad Hoc
Conference Enabled = False’

1. Application does
LineRemoveFromConference on the
‘Conferenced’ CallLeg on A which is
connected to B and mode is "Inactive or
Remote In use".

Error LINEERR_INVALCALLSTATE is sent to
application.

Action Expected Events
A-131
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
2. Application does
LineRemoveFromConference on the
‘Conferenced’ CallLeg on A which is
connected to B and mode is ‘Active’.

B will be dropped out of conference.

LINECALLSTATE Event will be sent to
Application with state = Idle.

CallLegs after the Party is dropped from
Conference:

CallLegs on A:

Connected - to Conference Bridge (Active)

IDLE - (on the conferenced callLeg which was
connected to A - B)

Conferenced - (caller Id - A ;Called Id - C;
Connected Id - C) (Active)

Conferenced - (caller Id - A ;Called Id - A';
Connected Id - A') (Active)

Connected - to Conference Bridge (Remote in
Use)

IDLE - (on the conferenced callLeg which was
connected to A' - B)

Conferenced - (caller Id - A' ;Called Id - C;
Connected Id - C) (Remote in Use)

Conferenced - (caller Id - A' ;Called Id - A;
Connected Id - A) (Remote in Use)

CallLegs on A':

Connected - to Conference Bridge (Active)

IDLE - (on the conferenced callLeg which was
connected to A' - B)

Conferenced - (caller Id - A' ;Called Id - C;
Connected Id - C) (Active)

Conferenced - (caller Id - A' ;Called Id - A;
Connected Id - A) (Active)

Connected - to Conference Bridge (Remote in
Use)

IDLE - (on the conferenced callLeg which was
connected to A - B)

Conferenced - (caller Id - A ;Called Id - C;
Connected Id - C) (Remote in Use)

Conferenced - (caller Id - A ;Called Id - A';
Connected Id - A') (Remote in Use)

CallLegs on B:

 All 4 CallLegs are in IDLE state

Action Expected Events
A-132
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
CallLegs on C:

Connected - to Conference Bridge

Conferenced - (caller Id - C ;Called Id - A;
Connected Id - A)

IDLE - (on the conferenced callLeg which was
connected to C - B)

Conferenced - (caller Id - C ;Called Id - A';
Connected Id - A')

Application does a LineOpen (B) with new Ext
ver. Unified CM Parameter Advanced Ad Hoc
Conference Enabled = True

Action Expected Events
A-133
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
3. Application does
LineRemoveFromConference on the
‘Conferenced’ CallLeg on B which is
connected to A and mode is "Active".

A will be dropped out of conference.

LINECALLSTATE Event will be sent to
Application with state = Idle.

CallLegs after the Party is dropped from
Conference:

CallLegs on A:

IDLE - (on the Connected callLeg which was
connected to Conference Bridge,A- CFB)

IDLE - (on the conferenced callLeg which is
connected to A - B)

IDLE - (on the conferenced callLeg which is
connected to A - C)

IDLE -(on the conferenced callLeg which is
connected to A - A')

Connected - to Conference Bridge (Remote in
Use)

Conferenced - (caller Id - A' ;Called Id - C;
Connected Id - C) (Remote in Use)

Conferenced - (caller Id - A' ;Called Id - B;
Connected Id - B) (Remote in Use)

CallLegs on A':

IDLE - (on the Connected callLeg which was
connected to Conference Bridge,A - CFB)

IDLE - (on the conferenced callLeg which is
connected to A - B)

IDLE - (on the conferenced callLeg which is
connected to A - C)

IDLE -(on the conferenced callLeg which is
connected to A - A')

Connected - to Conference Bridge

Conferenced - (caller Id - A' ;Called Id - C;
Connected Id - C) (Active)

Conferenced - (caller Id - A' ;Called Id - B;
Connected Id - B) (Active)

CallLegs on B:

Connected - to Conference Bridge

Conferenced - (caller Id - B ;Called Id - A;
Connected Id - A')

IDLE - (on the conferenced callLeg which was
connected to B - A)

Conferenced - (caller Id - B ;Called Id - C;
Connected Id - C)

Action Expected Events
A-134
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Chained Conference.

CallLegs on C:

Connected - to Conference Bridge

Conferenced - (caller Id - C ;Called Id - A';
Connected Id - A')

IDLE - (on the conferenced callLeg which was
connected to C - A)

Conferenced - (caller Id - C ;Called Id - B;
Connected Id - B)

Action Expected Events

Action Expected Events

A,B and CB2 are in conference(CB1); B is
conference Controller

C,D and E are in Conference (CB2); D is
conference Controller

Unified CM Parameter Advanced Ad Hoc
Conference Enabled = True

Application does a LineOpen (A) with new Ext
ver.

1. Application does
LineRemoveFromConference on the
Conferenced" CallLeg on A which is
connected to B.

B is disconnected and dropped out of Conference.

A is now in conference with CB2.

LINECALLSTATE Event is sent to Application
for Line B with state = Idle.
A-135
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
C-Barge: Unified CM Service Parameter Advanced Ad Hoc Conference Enabled = True.

Action Expected Events

B call A and A';

A answers the call and on A' do c-Barge;

A,B and A' will be in conference; A is conference
Controller

Unified CM Parameter "Drop Ad Hoc Conference
= Never"

Application does a LineOpen (A) with new Ext
ver.
A-136
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Application does a LineOpen (A) with new Ext
ver.

1. Application does
LineRemoveFromConference on the
"Conferenced" CallLeg on A which is
connected to B and mode is Active

B is dropped out of conference.

LINECALLSTATE Event will be sent to
Application with state = Idle.

CallLegs after the Party is dropped from
Conference:

CallLegs on A:

 Connected - (on the conferenced callLeg which
was connected to A - A') (Active)

 Connected - on the conferenced callLeg which
was connected to A' - A) (Remote in Use)

 IDLE - (on the conferenced callLeg which was
connected to A - B)

 IDLE - (on the connected callLeg which is
connected to conference Bridge; A - CFB)

 IDLE - (on the conferenced callLeg which was
connected to A' - B)

 IDLE - (on the connected callLeg which is
connected to conference Bridge; A' - CFB)

CallLegs on A':

 Connected - (on the conferenced callLeg which
was connected to A' - A) (Active)

 Connected - on the conferenced callLeg which
was connected to A - A') (Remote in Use)

 IDLE - (on the conferenced callLeg which was
connected to A - B)

 IDLE - (on the connected callLeg which is
connected to conference Bridge; A - CFB)

 IDLE - (on the conferenced callLeg which was
connected to A' - B)

 IDLE - (on the connected callLeg which is
connected to conference Bridge; A' - CFB)

CallLegs on B:

 All 4 CallLegs are in IDLE state

A' is dropped out of conference.

LINECALLSTATE Event will be sent to
Application with state = Idle.

Action Expected Events
A-137
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Park Monitoring
Use cases related to Park Monitoring feature are mentioned below:

Park Monitoring Feature Disabled

Setup:

2. Application does
LineRemoveFromConference on the
Conferenced CallLeg on A which is
connected to A' and mode is Active.

CallLegs after the Party is dropped from
Conference:

CallLegs on A:

 Connected -(on the conferenced callLeg which
was connected to A - B) (Active)

 IDLE -(on the conferenced callLeg which was
connected to A' - B) (Remote in Use)

 IDLE - (on the conferenced callLeg which was
connected to A - A') (active)

 IDLE - (on the connected callLeg which is
connected to conference Bridge; A - CFB)

 IDLE - (on the conferenced callLeg which was
connected to A' - A) (Remote in Use)

 IDLE - (on the connected callLeg which is
connected to conference Bridge; A' - CFB)

CallLegs on A':

 Connected -(on the conferenced callLeg which
was connected to A - B) (Remote in Use)

 IDLE -(on the conferenced callLeg which was
connected to A' - B)

 IDLE - (on the conferenced callLeg which was
connected to A - A') (active)

 IDLE - (on the connected callLeg which is
connected to conference Bridge; A - CFB)

 IDLE - (on the conferenced callLeg which was
connected to A' - A) (Remote in Use)

 IDLE - (on the connected callLeg which is
connected to conference Bridge; A' - CFB)

CallLegs on B:

 Connected -(on the conferenced callLeg which
was connected to B - A)

 IDLE -(on the conferenced callLeg which was
connected to A' - B)

 IDLE - (on the connected callLeg which is
connected to conference Bridge; B - CFB)

Action Expected Events
A-138
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
The Park Monitoring message flag is disabled by default.

Cisco Unified IP Phones (future version) running SIP: A(3000), B(3001)

All lines are monitered by TSP

Park Monitoring Feature Enabled

Setup:

Cisco Unified IP Phones (future version) running SIP: A(3000), B(3001),C(3002)

All lines are monitered by TSP

Action Expected Events

1. A(3000) calls B(3001)

2. B(3001) receives the call and parks the call Application will not be notified about the New
Parked call through LINE_NEWCALL event as
the park Monitoring flag is disabled.

Action Expected Events

Scenario 1:

1. The Park Monitoring message flag is Enabled
using SLDST_SET_STATUS_MESSAGES
request for Line B(3001).

2. A(3000) calls B(3001)

3. B(3001) receives the call and parks the call at
5555

Park Status Event on B:

At Step 3:

Application will be notified about the New Parked
call through LINE_NEWCALL event

At Step 3:

Application will receive the LINE_CALLSTATE
event with the Park Status = Parked.

Application does a LineGetCallInfo.

LineCallInfo will contain the following:

hline : LH = 1

dwCallID : CallID

dwReason
:LINECALLREASON_PARKED

dwRedirectingIDName : TransactionIDID =
Sub1.

dwBearerMode: ParkStatus = 2

dwCallerID : ParkDN = 5555

dwCallerName : ParkDNPartition = P1

dwcalled : ParkedParty = 3000

dwCalledIDName : ParkedPartyPartition = P1.
A-139
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Scenario 2:

1. The Park Monitoring message flag is
Enabled using
SLDST_SET_STATUS_MESSAGES
request for Line B(3001).

2. A(3000) calls B(3001)

3. B(3001) receives the call and parks the call at
5555

4. The Park Monitoring Reversion Timer
expires while the call is still parked.

Park Status Event on B:

At Step 3:

 Application will receive the LINE_CALLSTATE
event with the Park Status = Parked.

At Step 4:

Application will receive the LINE_CALLSTATE
event with the Park Status = Reminder.

Application does a LineGetCallInfo.

LineCallInfo will contain the following:

hline : LH = 1

dwCallID : CallID

dwReason
:LINECALLREASON_PARKED

dwRedirectingIDName : TransactionIDID =
Sub1.

dwBearerMode: ParkStatus = 3

dwCallerID : ParkDN = 5555

dwCallerName : ParkDNPartition = P1

dwcalled : ParkedParty = 3000

dwCalledIDName : ParkedPartyPartition = P1.

Action Expected Events
A-140
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Scenario 3:

1. The Park Monitoring message flag is Enabled
using SLDST_SET_STATUS_MESSAGES
request for Line B(3001).

2. The Park Monitoring Forward No Retrieve
destination configured on B(3001) as
C(3002)

3. A(3000) calls B(3001)

4. B(3001) receives the call and parks the call

5. The Park Monitoring Reversion Timer
Expires while the call is still parked.

6. The Park Monitoring Forward No Retrieve
timer expires and now the call is forwarded to
the Park Monitoring Forward No Retrieve
Destination C(3002).

Park Status Event on B:

At Step 4:

Application will receive the LINE_CALLSTATE
event with the Park Status = Parked.

At Step 5:

Application will receive the LINE_CALLSTATE
event with the Park Status = Reminder.

At Step 6:

Application will receive the LINE_CALLSTATE
event with the Park Status = Forwarded

Application will receive the LINE_CALLSTATE
event with callstate IDLE.

The reason code CtiReasonforwardedNoRetrieve
will be updated in the
LINECALLINFO::dwDevSpecificData.Extended
CallInfo.dwExtendedCallReason =
CtiReasonforwardedNoRetrieve.

Application does a LineGetCallInfo.

LineCallInfo will contain the following:

hline : LH = 1

dwCallID : CallID

dwReason
:LINECALLREASON_PARKED

dwRedirectingIDName : TransactionIDID =
Sub1.

dwBearerMode: ParkStatus = 6

dwCallerID : ParkDN = 5555

dwCallerName : ParkDNPartition = P1

dwcalled : ParkedParty = 3000

dwCalledIDName : ParkedPartyPartition = P1.

Action Expected Events
A-141
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Scenario 4:

1. The Park Monitoring message flag is Enabled
using SLDST_SET_STATUS_MESSAGES
request for Line B(3001).

2. A(3000) calls B(3001)

3. B(3001) receives the call and parks the call

 4. A(3000) hangs up the call.

Park Status Event on B:

At Step 3:

Application will receive the LINE_CALLSTATE
event with the Park Status = Parked.

At Step 4:

Application will receive the LINE_CALLSTATE
event with the Park Status = Abandoned.

Application will receive the LINE_CALLSTATE
event with callstate IDLE.

Application does a LineGetCallInfo.

LineCallInfo will contain the following:

hline : LH = 1

dwCallID : CallID

dwReason
:LINECALLREASON_PARKED

dwRedirectingIDName TransactionIDID = Sub1.

dwBearerMode: ParkStatus = 4

dwCallerID : ParkDN = 5555

dwCallerName : ParkDNPartition = P1

dwcalled : ParkedParty = 3000

dwCalledIDName : ParkedPartyPartition = P1.

Action Expected Events
A-142
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Scenario 5:

1. The Park Monitoring message flag is Enabled
using SLDST_SET_STATUS_MESSAGES
request for Line B(3001).

2. A(3000) calls B(3001)

3. B(3001) receives the call and parks the call

4. The Park Monitoring Reversion Timer
Expires while the call is still parked.

5. C(3002) retrieves the call

Park Status Event on B:

At Step 3:

Application will receive the LINE_CALLSTATE
event with the Park Status = Parked.

At Step 4:

Application will receive the LINE_CALLSTATE
event with the Park Status = Reminder.

At Step 5:

Application will receive the LINE_CALLSTATE
event with the Park Status = Retrieved.

Application will receive the LINE_CALLSTATE
event with callstate IDLE.

Application does a LineGetCallInfo.

hline: LH = 1

dwCallID: CallID

dwReason: LINECALLREASON_PARKED

dwRedirectingIDName: TransactionIDID =
Sub1.

dwBearerMode: ParkStatus = 5

dwCallerID: ParkDN = 5555

dwCallerName: ParkDNPartition = P1

dwcalled: ParkedParty = 3000

dwCalledIDName: ParkedPartyPartition = P1.

Action Expected Events
A-143
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Scenario 6:

1. The Park Monitoring message flag is Enabled
using SLDST_SET_STATUS_MESSAGES
request for Line B(3001).

2. The Park Monitoring Forward No retrieve
destination not configuered.

3. A(3000) calls B(3001)

4. B(3001) receives the call and parks the call

5. The Park Monitoring Reversion Timer
Expires while the call is still parked

6. The Park Monitoring Forward No Retrieve
timer expires and the call is forwarded to the
Parkers line.

Park Status Event on B

At Step 4:

Application will receive the LINE_CALLSTATE
event with the Park Status = Parked.

At Step 5:

Application will receive the LINE_CALLSTATE
event with the Park Status = Reminder.

At Step 6:

Application will receive the LINE_CALLSTATE
event with the Park Status = Forwarded.

Application will receive the LINE_CALLSTATE
event with callstate IDLE.

Application does a LineGetCallInfo.

LineCallInfo will contain the following:

hline: LH = 1

dwCallID: CallID

dwReason: LINECALLREASON_PARKED

dwRedirectingIDName: TransactionIDID =
Sub1.

dwBearerMode: ParkStatus = 6

dwCallerID: ParkDN = 5555

dwCallerName: ParkDNPartition = P1

dwcalled: ParkedParty = 3000

dwCalledIDName: ParkedPartyPartition = P1.

Action Expected Events
A-144
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Parked Call Exists

Setup:

Cisco Unified IP Phones (future version) running SIP: A(3000), B(3001).

Scenario 7:

1. The Park Monitoring message flag is Enabled
using SLDST_SET_STATUS_MESSAGES
request for Line B(3001).

2. The Park Monitoring Forward No retrieve
destination configuered as self(Parkers Line)

3. A(3000) calls B(3001)

4. B(3001) receives the call and parks the call

5. The Park Monitoring Reversion Timer
Expires while the call is still parked

6. The Park Monitoring Reversion Timer
Expires while the call is still parked

7. The Park Monitoring Forward No Retrieve
timer expires and the call is forwarded to the
Parkers line.

Park Status Event on B

At Step 5:

Application will receive the LINE_CALLSTATE
event with the Park Status = Parked.

At Step 6:

Application will receive the LINE_CALLSTATE
event with the Park Status = Reminder.

At Step 7:

Application will receive the LINE_CALLSTATE
event with the Park Status = Forwarded.

Application will receive the LINE_CALLSTATE
event with callstate IDLE.

Application does a LineGetCallInfo.

LineCallInfo will contain the following:

hline: LH = 1

dwCallID: CallID

dwReason: LINECALLREASON_PARKED

dwRedirectingIDName: TransactionIDID =
Sub1.

dwBearerMode: ParkStatus = 6

dwCallerID: ParkDN = 5555

dwCallerName: ParkDNPartition = P1

dwcalled : ParkedParty = 3000

dwCalledIDName : ParkedPartyPartition = P1.

Action Expected Events
A-145
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
B is not monitered by TSP.

Shared Line Scenario

Setup:

A(3000) ,D(3003) are Cisco Unified IP Phones (future version) running SIP

B(3001) and B'(3001) are shared lines for Cisco Unified IP Phones (future version) running SIP

C(3002) and C'(3002) are shared lines where C is a Cisco Unified IP Phone (future version) running SIP
and C' is a Cisco Unified IP Phone 7900 Series running SIP .

Action Expected Events

Scenario 1:

1. The Park Monitoring message flag is Enabled
using SLDST_SET_STATUS_MESSAGES
request for Line B(3001).

2. A(3000) calls B(3001)

3. B(3001) receives the call and parks the call

4. Now the Line B(3001) is monitered by TSP

 Park Status Event on B:

At Step 4:

Application will be notified about the Parked call
through LINE_NEWCALL event.when ever cisco
TSP recives the LINE_PARK_STATUS event for
already parked call.

Application does a LineGetCallInfo.

LineCallInfo will contain the following:

hline : LH = 1

dwCallID : CallID

dwReason
:LINECALLREASON_PARKED

dwRedirectingIDName TransactionIDID = Sub1.

dwBearerMode: ParkStatus = 2

dwCallerID : ParkDN = 5555

dwCallerName : ParkDNPartition = P1

dwcalled : ParkedParty = 3000

dwCalledIDName : ParkedPartyPartition = P1.
A-146
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
For the shared lines the events will be delivered to the phone which parks the call .Events will not be
delivered to the other phone though the line is shared.

Action Expected Events

Scenario 1:

1. The Park Monitoring message flag is Enabled
using SLDST_SET_STATUS_MESSAGES
request for Line B(3001).

2. A(3000) calls B(3001)

3. B(3001) and B'(3001) starts ringing. B(3001)
receives the call and parks the call

4. Park Monitoring reversion timer expires
while the call is still parked.

5. D(3003) retrieves the call

Park Status Event on B:

At Step 3:

Application will receive the LINE_CALLSTATE
event with the Park Status = Parked.

At Step 4:

Application will receive the LINE_CALLSTATE
event with the Park Status = Reminder.

At Step 5:

Application will receive the LINE_CALLSTATE
event with the Park Status = Retrieved

Application will receive the LINE_CALLSTATE
event with callstate IDLE.

Application does a LineGetCallInfo.

hline : LH = 1

dwCallID : CallID

dwReason
:LINECALLREASON_PARKED

dwRedirectingIDName :TransactionIDID =
Sub1.

dwBearerMode: ParkStatus = 5

dwCallerID : ParkDN = 5555

dwCallerName : ParkDNPartition = P1

dwcalled : ParkedParty = 3000

dwCalledIDName : ParkedPartyPartition = P1.
A-147
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Park Monitoring Feature Disabled

Setup:

The Park Monitoring message flag is Enabled using SLDST_SET_STATUS_MESSAGES request for
line B(3001).

Scenario 2:

1. The Park Monitoring message flag is Enabled
using SLDST_SET_STATUS_MESSAGES
request for Line B(3001).

2. The Park Monitoring Forward No retrieve
destination configuered as B(3001)

3. A(3000) calls B(3001)

4. B(3001) and B'(3001) starts ringing.
B(3001)receives the call and parks the call

5. The Park Monitoring Reversion Timer
Expires while the call is still parked.

6. The Park Monitoring Forward No Retrieve
timer expires and call is forwarded to
B(3001).Both B(3001) and B'(3001) starts
ringing as they are shared lines.

Park Status Event will be sent only to B not B'.

At Step 4:

Application will receive the LINE_CALLSTATE
event with the Park Status = Parked.

At Step 5:

Application receives the LINE_CALLSTATE
event with the Park Status = Reminder.

At Step 6:

Application receives the LINE_CALLSTATE
event with the Park Status = Forwarded.

Application receive the LINE_CALLSTATE
event with callstate IDLE.

Application does a LineGetCallInfo.

LineCallInfo contains the following:

hline : LH = 1

dwCallID : CallID

dwReason
:LINECALLREASON_PARKED

dwRedirectingIDName : TransactionIDID =
Sub1.

dwBearerMode: ParkStatus = 6

dwCallerID : ParkDN = 5555

dwCallerName : ParkDNPartition = P1

dwcalled : ParkedParty = 3000

dwCalledIDName : ParkedPartyPartition = P1.

Scenario 3:

1. The Park Monitoring message flag is Enabled
using SLDST_SET_STATUS_MESSAGES
request for Line B(3001).

2. A(3000) calls C(3002)

3. C(3002) and C'(3002) starts ringing. C'(3002)
receives the call and parks the call

4. D(3003) retrieves the call

Park Status Event on C'.

At Step 3:

Application is notified about the New Parked call
through LINE_NEWCALL event as the call is
parked by the Normal TNP phone.

Action Expected Events
A-148
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
A(3000), D(3003) is a Cisco Unified IP Phones (future version)

Application invokes the Line_open () API on provider to monitor ParkDN

.

Logical Partitioning Support
Use cases related to Logical Partitioning feature are mentioned below:

Action Expected Events

Scenario 1:

1. The Park Monitoring message flag is Enabled
using SLDST_SET_STATUS_MESSAGES
request for Line B(3001).

2. A(3000) calls B(3001)

3. B(3001) receives the call and parks the call

4. The Park Monitoring Reversion Timer
Expires while the call is still parked.

 Park Status Event on B:

At Step 3:

Application receives the LINE_NEW_CALL
event for PARKDN.

At Step 3:

Application receives the LINE_PARK_STATUS
event with the Park Status = Parked.

At Step 4:

Application will receive the
LINE_CALL_STATE event with the Park Status
= Reminder.

Application does a LineGetCallInfo.

LineCallInfo will contain the following:

hline : LH = 1

dwCallID : CallID

dwReason
:LINECALLREASON_PARKED

dwRedirectingIDName :TransactionIDID =
Sub1.

dwBearerMode: ParkStatus = 3

dwCallerID : ParkDN = 5555

dwCallerName : ParkDNPartition = P1

dwcalled : ParkedParty = 3000

dwCalledIDName : ParkedPartyPartition = P1.
A-149
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Basic Call Scenario

Redirect Scenario

Basic Call Scenario ; Logical partitioning Enabled = true

Description Basic Call failure due to Logical partitioning Feature Policy.

Test Setup A (VOIP) on one Geolocation

A calls B:

 LineMakeCall on A

 Dails B (DN)

Variant 1: B Geo-Location was not Configured;B(PSTN);Policy Config
: Interior to Interior

Variant 2: B (PSTN) on another GeoLocation

Expected Results Variant 1: Call will be successful; Reason: LP_IGNORE.

Variant 2: A goes to Proceeding State and then On A there will be a
DISCONNECTED call state will be sent to application with cause as
LINEDISCONNECTMODE_UNKNOWN.

Redirect Scenario ; Logical partitioning Enabled = true

Description Redirect Call failure due to Logical partitioning Feature Policy.

Test Setup Two Clusters (Cluster1 and Cluster2) configured with logical partition
policy that will restrict the VOIP calls from Cluster1 to PSTN calls on
Cluster2. (vice versa PSTN to VIOP)

A on Cluster1 (VOIP)

B on Cluster2 (VOIP)

C on Cluster2 (PSTN)

A calls B

B redirects the call to C

Expected Results Operation fails with error code
LINEERR_OPERATION_FAIL_PARTITIONING_POLICY.

Error code is processed on Cluster2

Variants For Forward Operation same behaviour will be observed.
A-150
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Transfer Call Scenario

Join Scenario

Transfer Call Scenario ; Logical partitioning Enabled = true

Description Transfer Call failure due to Logical partitioning Feature Policy.

Test Setup A (VOIP) in one GeoLocation (GeoLoc 1)

B (VOIP) in another GeoLocation(GeoLoc 2)

C (PSTN)in same GeoLocation as B (GeoLoc 2)

A calls B

SetUpTransfer on B.

On Consult Call at B; Dials C.

Complete Transfer on B.

Expected Results Operation fails with error code "LINEERR_OPERATIONUNAVAIL".

Variants For Operation Adhoc Conference same behaviour will be observed.

Join Scenario; Logical partitioning Enabled = true

Description Join failure due to Logical partitioning Feature Policy.

Test Setup A (VOIP) in one GeoLocation (GeoLoc 1)

B (VOIP) in another GeoLocation(GeoLoc 2)

C (VOIP)in same GeoLocation as B (GeoLoc 2)

D (PSTN) in same GeoLocation as B (GeoLoc 2)

B has Three Calls

1. B -> A

2. B -> C

3. B -> D

Variant 1: Join on B with B -> A as Primary Call.

Variant 2: Join on B with B -> D as Primary Call.

Variant 3: Join on B with B -> C as Primary Call.

Expected Results Variant 1: A, B and C will be in conference.

Variant 2: B, C and D will be in conference.

Variant 3:Either A or D will be in conference with B and C.
A-151
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Shared Line Scenario

CallPark: Retrieve Scenario

Basic Call Scenario

CallPickUp Scenario ; Logical partitioning Enabled = true

Description CallPickUp Failure due to Logical partitioning Feature Policy.

Test Setup A (PSTN) on one Geolocation - GeoLoc1

B (VOIP) on one Geolocation - GeoLoc1

C (VOIP) on one Geolocation - GeoLoc2

A Dails B

B Parks the call

C does LineUnPark

Expected Results Call will be successful on A and A' call will not be present

Variants Shared line features like barge, cbarge, hold & remote resume should be
disabled for calls.

CallPickUp Scenario ; Logical partitioning Enabled = true

Description CallPickUp Failure due to Logical partitioning Feature Policy.

Test Setup A (PSTN) on one Geolocation - GeoLoc1

B (VOIP) on one Geolocation - GeoLoc1

C (VOIP) on one Geolocation - GeoLoc2

A Dails B

B Parks the call

C does LineUnPark

Expected Results CallUpark Will fail with error code
"LINEERR_OPERATIONUNAVAIL".

Basic Call Scenario ; Logical partitioning Enabled = true

Description Basic Call failure due to Logical partitioning Feature Policy.
A-152
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Support for Cisco IP Phone 6900 Series
Use cases related to Cisco Unified IP Phone 6900 Series support feature are mentioned below:

Monitoring Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll over Mode when User is Added
to New User Group

Test Setup A (VOIP) on one Geolocation

A calls B:

 LineMakeCall on A

 Dails B (DN)

Variant 1: B Geo-Location was not Configured;B(PSTN);Policy
Config: Interior to Interior

Variant 2: B (PSTN) on another GeoLocation

Expected Results Variant 1: Call will be successful; Reason: LP_IGNORE.

Variant 2: A goes to Proceeding State and then On A there will be a
DISCONNECTED call state will be sent to application with cause as
LINEDISCONNECTMODE_UNKNOWN.

Basic Call Scenario ; Logical partitioning Enabled = true

Monitoring Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll Over Mode When
User is added to New User Group

Description Testing Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone
7931 behavior when User is added to new user Group.

Test Setup A - Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931
Phone with Roll Over Mode

User is added to New User Group.

Application does Line Initialize

Expected Results Lines on the Cisco Unified IP Phone 7931 will be enumerated.

Application would be able to Open Cisco Unified IP Phone 6900
Series/Cisco Unified IP Phone 7931 and it would be able to control and
perform call operations on Phone.
A-153
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Monitoring Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll Over Mode when User is Added
to New User Group

Transfer Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll Over Mode when
User is Added to New User Group

Monitoring Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll Over Mode When
User is added to New User Group

Description Testing Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone
7931 behavior when User is added to new user Group.

Test Setup A - Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931
with Roll Over Mode

Step 1: Application does Line Initialize

Step 2: User is added to New User Group.

Expected Results Step 1: Lines on Cisco Unified IP Phone 6900 Series/Cisco Unified IP
Phone 7931 will not be enumerated

Application will not be notified about the device A and it will not be
able to monitor.

Step 2: Application will be receiving PHONE_CREATE and
LINE_CREATE events for the Device and lines on that Cisco Unified
IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll Over Mode.

Now Applications would be able to Monitor and control Cisco Unified
IP Phone 6900 Series/Cisco Unified IP Phone 7931.

Transfer Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll Over
Mode When User is added to New User Group

Description Testing Transfer scenario on Cisco Unified IP Phone 6900 Series/Cisco
Unified IP Phone 7931 when User is added to new user Group.
A-154
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Conference Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll Over Mode when
User is added to New User Group

Test Setup User is added to New User Group.

A,B are two lines on Cisco Unified IP Phone 6900 Series/Cisco Unified
IP Phone 7931 with Roll Over Mode

C, D is two SCCP phones.

Outbound Roll Over Mode - "Roll Over to any Line"

Max Number of Calls: 1

Busy Trigger: 1

Application does Line Initialize; Application opens all the lines on
Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931.

C calls A,A answers

SetupTransfer on A.

Variants: Application Opens only Line A on Cisco Unified IP Phone
6900 Series/Cisco Unified IP Phone 7931

Expected Results Call on A will go to OnHold State.

New call will be created on Line B.

Application then has to complete Transfer using DTAL feature.

Variants: Applications would not be able to Complete Transfer from
Application as the Line B is not monitored.

Transfer Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll Over
Mode When User is added to New User Group

Conference Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll over
Mode when User is added to New User Group

Description Testing Conference Scenario on Cisco Unified IP Phone 6900
Series/Cisco Unified IP Phone 7931 when User is added to New User
Group.
A-155
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Transfer/Conference Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll over
Mode when User is Added to New User Group

Test Setup User is added to New User Group.

A,B are two lines on Cisco Unified IP Phone 6900 Series/Cisco Unified
IP Phone 7931 with Roll Over Mode

C, D are two SCCP phones

Outbound Roll Over Mode - "Roll Over to any Line"

Max Number of Calls: 1

Busy Trigger: 1

Application does Line Initialize

C calls A,A answers

SetupConference on A.

Expected Results Call on A will go to OnHold State.

New call will be created on Line B.

Application then has to complete Conference using Join Across Lines
feature.

Conference Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll over
Mode when User is added to New User Group

Transfer/Conference Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in
Roll Over Mode when User is added to New User Group

Description Testing Transfer/Conference Scenario on Cisco Unified IP Phone 6900
Series/Cisco Unified IP Phone 7931 when User is added to New User
Group and different Roll Over Mode.

Test Setup User is added to New User Group.

A,B are two lines on Cisco Unified IP Phone 6900 Series/Cisco Unified
IP Phone 7931 with Roll Over Mode

C, D is two SCCP phones.

Outbound Roll Over Mode - "Roll Over to any Line"

Max Number of Calls: 2

Busy Trigger: 1

Application does Line Initialize; Application opens all the lines on
Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931.

C calls A,A answers

SetupTransfer on A.
A-156
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Transfer/Conference Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll Over
Mode when User is Added to New User Group

Expected Results Call on A will go to
OnHoldPendingTransfer/OnHoldPendingConference.

New Consult call will be created on Line A.

Application then has to complete Transfer using CompleteTransfer or
DTAL feature.

Variants Test the same Scenario with Conference

LineCompleteTransfer with Mode as Conference to complete
Conference

Transfer/Conference Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in
Roll Over Mode when User is added to New User Group

Transfer/Conference Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in
Roll Over Mode When User is added to New User Group

Description Testing Transfer/Conference Scenario on Cisco Unified IP Phone 6900
Series/Cisco Unified IP Phone 7931 When User is added to New User
Group and different Roll Over Mode.

Test Setup User is added to New User Group.

A,B are two lines on Cisco Unified IP Phone 6900 Series/Cisco Unified
IP Phone 7931 with Roll Over Mode

C, D is two SCCP phones.

Outbound Roll Over Mode - Roll Over to any Line

Max Number of Calls: 2

Busy Trigger: 1

Application does Line Initialize; Application opens all the lines on
Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931.

C calls A,A answers

SetupTransfer on A.

Expected Results Call on A will go to
OnHoldPendingTransfer/OnHoldPendingConference.

New Consult call will be created on Line A.

Application then has to complete Transfer using CompleteTransfer or
DTAL feature.

Variants Test the same Scenario with Conference

LineCompleteTransfer with Mode as Conference to complete
Conference
A-157
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Transfer/Conference Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll Over
Mode when User is Added to New User Group

Transfer/Conference Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in
Roll Over Mode When User is added to New User Group

Description Testing Transfer/Conference Scenario on Cisco Unified IP Phone 6900
Series/Cisco Unified IP Phone 7931 when User is added to New User
Group and different Roll Over Mode.

Test Setup User is added to New User Group.

A,B are two lines on Cisco Unified IP Phone 6900 Series/Cisco Unified
IP Phone 7931 with Roll Over Mode

C, D is two SCCP phones.

Lines A and B are configured with Different DN

Outbound Roll Over Mode - Roll Over within same DN

Max Number of Calls: 1

Busy Trigger: 1

Application does Line Initialize; Application opens all the lines on
Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931.

C calls A,A answers

SetupTransfer on A.

Expected Results SetupTransfer Request will fail with error
"LINEERR_CALLUNAVAIL".

Variants Test the same Scenario with SetupConference
A-158
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Transfer/Conference Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll Over
Mode when User is Added to New User Group

Transfer/Conference Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in
Roll Over Mode When User is added to New User Group

Description Testing Transfer/Conference Scenario on Cisco Unified IP Phone 6900
Series/Cisco Unified IP Phone 7931 when User is added to New User
Group and different Roll Over Mode.

Test Setup User is added to New User Group.

A,B are two lines on Cisco Unified IP Phone 6900 Series/Cisco Unified
IP Phone 7931 with Roll Over Mode

C, D is two SCCP phones.

Lines A and B are configured with Different DN

Outbound Roll Over Mode - Roll Over within same DN

Max Number of Calls: 2

Busy Trigger: 1

Application does Line Initialize; Application opens all the lines on
Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931.

C calls A,A answers

SetupTransfer on A.

Expected Results Call on A will go to OnHoldPendingTransfer/Conference State.

New Consult call will be created on Line A.

Application then has to complete Transfer using CompleteTransfer or
DTAL feature.

Variants Test the same Scenario with SetupConference
A-159
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
LineMakeCall Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll Over Mode
when User is Added to New User Group

LineMakeCall Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll
Over Mode When User is added to New User Group

Description Testing LineMakeCall Operation on Cisco Unified IP Phone 6900
Series/Cisco Unified IP Phone 7931 when User is added to New User
Group and different Roll Over Mode.

Test Setup User is added to New User Group.

A,B are two lines on Cisco Unified IP Phone 6900 Series/Cisco Unified
IP Phone 7931 with Roll Over Mode

C, D is two SCCP phones.

Lines A and B are configured with Different DN

Outbound Roll Over Mode - Roll Over within same DN" or "Roll Over
to Any Line

Max Number of Calls: 1

Busy Trigger: 1

Application does Line Initialize; Application opens all the lines on
Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931.

C calls A,A answers

LineMakeCall on A.

Expected Results LineMakeCall Operation will fail with error
"LINEERR_CALLUNAVAIL".

Roll Over Doesn't Happen to second line as the roll over is only for
Outbound Calls.
A-160
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
LineUnPark Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll over Mode when
User is Added to New User Group

EM Login/Logout Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll Over Mode
when User is Added to New User Group

LineUnPark Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll
Over Mode When User is added to New User Group

Description Testing LineUnPark Operation on Cisco Unified IP Phone 6900
Series/Cisco Unified IP Phone 7931 When User is added to New User
Group and different Roll Over Mode.

Test Setup User is added to New User Group.

A,B are two lines on Cisco Unified IP Phone 6900 Series/Cisco Unified
IP Phone 7931 with Roll Over Mode

C, D is two SCCP phones.

Lines A and B are configured with Different DN

Outbound Roll Over Mode - Roll Over within same DN" or "Roll Over
to Any Line

Max Number of Calls: 1

Busy Trigger: 1

Application does Line Initialize; Application opens all the lines on
Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931.

C calls A,A answers

LineUnPark on A.(tires to retrieve the available Parked Call from Park
DN)

Expected Results LineUnPark Operation will fail with error
"LINEERR_CALLUNAVAIL".

Roll Over Doesn't Happen to second line as the roll over is only for
Outbound Calls.

EM Login/Logout Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in
Roll Over Mode When User is added to New User Group

Description Testing EM Log In/Out Operation on Cisco Unified IP Phone 6900
Series/Cisco Unified IP Phone 7931 When User is added to New User
Group and different Roll Over Mode.

Test Setup User is added to New User Group.

A,B are two lines on Cisco Unified IP Phone 6900 Series/Cisco Unified
IP Phone 7931 with Roll Over Mode

C, D is two SCCP phones.

EM Profile is logged onto the Cisco Unified IP Phone 6900 Series/Cisco
Unified IP Phone 7931.

Test the Use Case from UseCase#1 to UseCase#10

Expected Results Same as the Use Case tested.
A-161
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Manual Transfer Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll Over Mode
when User is Added to New User Group

Manual Transfer Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll
Over Mode When User is added to New User Group

Description Testing Existing Call Events on Cisco Unified IP Phone 6900
Series/Cisco Unified IP Phone 7931 when User is added to New User
Group and different Roll Over Mode.

Test Setup User is added to New User Group.

A,B are two lines on Cisco Unified IP Phone 6900 Series/Cisco Unified
IP Phone 7931 with Roll Over Mode

C, D is two SCCP phones.

Outbound Roll Over Mode - Roll Over to any Line

Max Number of Calls: 1

Busy Trigger: 1

Application does Line Initialize; Application opens all the lines on
Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931.

Step 1: From Phone C call A

Step 2: Answer the Call on A

Step 3: Press Transfer Button on Cisco Unified IP Phone 6900 Series
and Dial D.

Step 4: Answer the Call on D

Step 5: Complete Transfer from Phone A

Variant: Monitor Phones after Transfer is completed from Phone.

Expected Results Step 4:

 Call on Line A will be in OnHold State.

Call on Line B will be in Connected State.

Note When consult call is created on the same Line; Call will be on
ONHOLDPENDINGTRANSFER state.

Step 5:

 Both the calls on A and B will go to IDLE state.

C and D will be in Simple Call.

Variant: Same as this Use Case
A-162
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Manual Conference Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll Over
Mode when User is Added to New User Group

Manual Conference Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in
Roll Over Mode When User is added to New User Group

Description Testing Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone
7931 behavior When User is added to New User Group and different
Roll Over Mode.

Test Setup User is added to New User Group.

A,B are two lines on Cisco Unified IP Phone 6900 Series/Cisco Unified
IP Phone 7931 with Roll Over Mode

C, D is two SCCP phones.

Outbound Roll Over Mode - "Roll Over to any Line"

Max Number of Calls: 1

Busy Trigger: 1

Application does Line Initialize; Application opens all the lines on
Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931.

Step 1: From Phone C call A

Step 2: Answer the Call on A

Step 3: Press conference Button on Cisco Unified IP Phone 6900 Series
and Dial D.

Step 4: Answer the Call on D

Step 5: Complete Conference from Phone

Variant: Monitor Phones after Conference is completed from Phone.

Expected Results Step 4:

 Call on Line A will be in OnHold State.

Call on Line B will be in Connected State.

Note When consult call is created on the same Line; Conference
Model is created as today on Non-Cisco Unified IP Phone 6900
Series.

Step 5: A ,C and D will be in conference

Conference model will be created on Line A.

Variant: Same as this Use Case.
A-163
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Manual Conference Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll Over
Mode when User is Added to New User Group

Manual Conference Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in
Roll Over Mode When User is added to New User Group

Description Testing Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone
7931 behavior When User is added to New User Group and different
Roll Over Mode.

Test Setup User is added to New User Group.

A,B are two lines on Cisco Unified IP Phone 6900 Series/Cisco Unified
IP Phone 7931 with Roll Over Mode

C, D is two SCCP phones.

Outbound Roll Over Mode - "Roll Over to any Line"

Max Number of Calls: 1

Busy Trigger: 1

Application does Line Initialize; Application opens all the lines on
Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931.

Step 1: From Phone C call A

Step 2: Answer the Call on A

Step 3: Press conference Button on Cisco Unified IP Phone 6900 Series
Phone and Dial D.

Step 4: Answer the Call on D

Step 5: Complete Conference from Phone

Variant: Monitor Phones after Conference is completed from Phone.

Expected Results Step 4:

 Call on Line A will be in OnHold State.

Call on Line B will be in Connected State.

Note When consult call is created on the same Line; Conference
Model is created as today on Non-Cisco Unified IP Phone 6900
Series Phone.

Step 5: A ,C and D will be in conference

Conference model will be created on Line A.

Variant: Same as this Use Case.
A-164
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
SetupConference Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll Over Mode
when User is Added to New User Group

BWC on Cisco Unified IP Phone 7931 in Non Roll Over Mode when User is Removed from New User Group

SetupConference Operation on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in
Roll Over Mode When User is added to New User Group

Description Testing Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone
7931 behavior When User is added to New User Group and different
Roll Over Mode.

Test Setup User is added to New User Group.

A,B are two lines on Cisco Unified IP Phone 6900 Series/Cisco Unified
IP Phone 7931 with Roll Over Mode

C, D is two SCCP phones.

Outbound Roll Over Mode - "Roll Over to any Line"

Max Number of Calls: 1

Busy Trigger : 1

Application does Line Initialize; Application opens all the lines on
Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931.

C calls A,A answers

Step 1: SetupTransfer on A.

Step 2: Complete Conference From Phone.

Expected Results Step 1:

Call on Line A will be in OnHold State.

Call on Line B will be in Connected State.

Step 5: A ,C and D will be in conference

Conference model will be created on Line A.

BWC on Cisco Unified IP Phone 7931 in Non Roll Over Mode When User is removed from New User
Group

Description Testing Cisco Unified IP Phone 7931 Phone behavior in Non Roll Over
Mode When User is removed from New User Group.
A-165
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix A Message Sequence Charts
Acquire Device on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll Over Mode when User
is Added to New User Group

Test Setup User is Removed from New User Group.

A,B are two lines on Cisco Unified IP Phone 6900 Series/Cisco Unified
IP Phone 7931 with Non-Roll Over Mode

C, D is two SCCP phones.

Outbound Roll Over Mode - "Non Roll Over Mode"

Max Number of Calls: 1

Busy Trigger: 1

Application does Line Initialize

Expected Results Lines on the Cisco Unified IP Phone 7931 will be enumerated.

Application would be able to Open Cisco Unified IP Phone 7931 with
Non-Roll Over Mode and it would be able to control and perform call
operations on Phone.

BWC on Cisco Unified IP Phone 7931 in Non Roll Over Mode When User is removed from New User
Group

Acquire Device on Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll Over Mode
When User is added to New User Group

Description Testing Behavior of Cisco Unified IP Phone 6900 Series/Cisco Unified
IP Phone 7931 on Super Provider when User is added to new user
Group.

Test Setup A - Cisco Unified IP Phone 6900 Series/Cisco Unified IP Phone 7931
with Roll Over Mode

User is Added to New User Group.

Step 1: Application does Line Initialize

Step 2: LineDevSpecific to Acquire Cisco Unified IP Phone 6900
Series/Cisco Unified IP Phone 7931.

Step 3: User is removed from New User Group.

Expected Results Step 2: Application will be receiving PHONE_CREATE and
LINE_CREATE events for the Device and lines on that Cisco Unified
IP Phone 6900 Series/Cisco Unified IP Phone 7931 in Roll Over Mode.

Step 3: Application will be receiving LINE_REMOVE and
PHONE_REMOVE for the Cisco Unified IP Phone 7931 and
Application will no longer be able to monitor or control that device.
A-166
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

TAPI Developer Guide for Cisco Unif
OL-18532-01

A
 P P E N D I X B

Cisco Unified TAPI Interfaces

This appendix contains a listing of APIs that are supported and not supported.

Cisco Unified TAPI Version 2.1 Interfaces

Core Package
Table B-1 lists each TAPI interface

Table B-1 Compliance to TAPI 2.1

API/Message/Structure

Cisco
TAPI
Support Comments

TAPI Line Functions

lineAccept Yes

lineAddProvider Yes

lineAddToConference Yes

lineAnswer Yes

lineBlindTransfer Yes

lineCallbackFunc Yes

lineClose Yes

lineCompleteCall No

lineCompleteTransfer Yes

lineConfigDialog No

lineConfigDialogEdit No

lineConfigProvider Yes

lineDeallocateCall Yes

lineDevSpecific Yes

lineDevSpecificFeature Yes

lineDial Yes
B-1
ied Communications Manager Release 7.1(2)

Appendix B Cisco Unified TAPI Interfaces
Cisco Unified TAPI Version 2.1 Interfaces
lineDrop Yes

lineForward Yes

lineGatherDigits No

lineGenerateDigits Yes

lineGenerateTone Yes

lineGetAddressCaps Yes

lineGetAddressID Yes

lineGetAddressStatus Yes

lineGetAppPriority No

lineGetCallInfo Yes

lineGetCallStatus Yes

lineGetConfRelatedCalls Yes

lineGetCountry No

lineGetDevCaps Yes

lineGetDevConfig No

lineGetIcon No

lineGetID Yes

lineGetLineDevStatus Yes

lineGetMessage Yes

lineGetNewCalls Yes

lineGetNumRings Yes

lineGetProviderList Yes

lineGetRequest Yes

lineGetStatusMessages Yes

lineGetTranslateCaps Yes

lineHandoff Yes

lineHold Yes

lineInitialize Yes

lineInitializeEx Yes

lineMakeCall Yes

lineMonitorDigits Yes

lineMonitorMedia No

lineMonitorTones Yes

lineNegotiateAPIVersion Yes

lineNegotiateExtVersion Yes

Table B-1 Compliance to TAPI 2.1 (continued)

API/Message/Structure

Cisco
TAPI
Support Comments
B-2
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix B Cisco Unified TAPI Interfaces
Cisco Unified TAPI Version 2.1 Interfaces
lineOpen Yes

linePark Yes

linePickup No

linePrepareAddToConference Yes

lineRedirect Yes

lineRegisterRequestRecipient Yes

lineReleaseUserUserInfo No

lineRemoveFromConference No

lineRemoveProvider Yes

lineSecureCall No

lineSendUserUserInfo No

lineSetAppPriority Yes

lineSetAppSpecific No

lineSetCallData No

lineSetCallParams No

lineSetCallPrivilege Yes

lineSetCallQualityOfService No

lineSetCallTreatment No

lineSetCurrentLocation No

lineSetDevConfig No

lineSetLineDevStatus No

lineSetMediaControl No

lineSetMediaMode No

lineSetNumRings Yes

lineSetStatusMessages Yes

lineSetTerminal No

lineSetTollList Yes

lineSetupConference Yes

lineSetupTransfer Yes

lineShutdown Yes

lineSwapHold No

lineTranslateAddress Yes

lineTranslateDialog Yes

lineUncompleteCall No

lineUnhold Yes

Table B-1 Compliance to TAPI 2.1 (continued)

API/Message/Structure

Cisco
TAPI
Support Comments
B-3
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix B Cisco Unified TAPI Interfaces
Cisco Unified TAPI Version 2.1 Interfaces
lineUnpark Yes

TAPI Line Messages

LINE_ADDRESSSTATE Yes

LINE_APPNEWCALL Yes

LINE_CALLINFO Yes

LINE_CALLSTATE Yes

LINE_CLOSE Yes

LINE_CREATE Yes

LINE_DEVSPECIFIC Yes

LINE_DEVSPECIFICFEATURE Yes

LINE_GATHERDIGITS Yes

LINE_GENERATE Yes

LINE_LINEDEVSTATE Yes

LINE_MONITORDIGITS Yes

LINE_MONITORMEDIA No

LINE_MONITORTONE Yes

LINE_REMOVE Yes

LINE_REPLY Yes

LINE_REQUEST Yes

TAPI Line Structures

LINEADDRESSCAPS Yes

LINEADDRESSSTATUS Yes

LINEAPPINFO Yes

LINECALLINFO Yes

LINECALLLIST Yes

LINECALLPARAMS Yes

LINECALLSTATUS Yes

LINECALLTREATMENTENTRY No

LINECARDENTRY Yes

LINECOUNTRYENTRY Yes

LINECOUNTRYLIST Yes

LINEDEVCAPS Yes

LINEDEVSTATUS Yes

LINEDIALPARAMS No

LINEEXTENSIONID Yes

Table B-1 Compliance to TAPI 2.1 (continued)

API/Message/Structure

Cisco
TAPI
Support Comments
B-4
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix B Cisco Unified TAPI Interfaces
Cisco Unified TAPI Version 2.1 Interfaces
LINEFORWARD Yes

LINEFORWARDLIST Yes

LINEGENERATETONE Yes

LINEINITIALIZEEXPARAMS Yes

LINELOCATIONENTRY Yes

LINEMEDIACONTROLCALLSTATE No

LINEMEDIACONTROLDIGIT No

LINEMEDIACONTROLMEDIA No

LINEMEDIACONTROLTONE No

LINEMESSAGE Yes

LINEMONITORTONE Yes

LINEPROVIDERENTRY Yes

LINEPROVIDERLIST Yes

LINEREQMEDIACALL No

LINEREQMAKECALL Yes

LINETERMCAPS No

LINETRANSLATECAPS Yes

LINETRANSLATEOUTPUT Yes

TAPI Phone Functions

phoneCallbackFunc Yes

phoneClose Yes

phoneConfigDialog No

phoneDevSpecific Yes

phoneGetButtonInfo No

phoneGetData No

phoneGetDevCaps Yes

phoneGetDisplay Yes

phoneGetGain No

phoneGetHookSwitch No

phoneGetIcon No

phoneGetID No

phoneGetLamp No

phoneGetMessage Yes

phoneGetRing Yes

phoneGetStatus No

Table B-1 Compliance to TAPI 2.1 (continued)

API/Message/Structure

Cisco
TAPI
Support Comments
B-5
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix B Cisco Unified TAPI Interfaces
Cisco Unified TAPI Version 2.1 Interfaces
phoneGetStatusMessages Yes

phoneGetVolume No

phoneInitialize Yes

phoneInitializeEx Yes

phoneNegotiateAPIVersion Yes

phoneNegotiateExtVersion No

phoneOpen Yes

phoneSetButtonInfo No

phoneSetData No

phoneSetDisplay Yes

phoneSetGain No

phoneSetHookSwitch No

phoneSetLamp No

phoneSetRing No

phoneSetStatusMessages Yes

phoneSetVolume No

phoneShutdown Yes

TAPI Phone Messages

PHONE_BUTTON Yes

PHONE_CLOSE Yes

PHONE_CREATE Yes

PHONE_DEVSPECIFIC No

PHONE_REMOVE Yes

PHONE_REPLY Yes

PHONE_STATE Yes

TAPI Phone Structures

PHONEBUTTONINFO No

PHONECAPS Yes

PHONEEXTENSIONID No

PHONEINITIALIZEEXPARAMS Yes

PHONEMESSAGE Yes

PHONESTATUS No

VARSTRING Yes

Table B-1 Compliance to TAPI 2.1 (continued)

API/Message/Structure

Cisco
TAPI
Support Comments
B-6
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix B Cisco Unified TAPI Interfaces
Cisco Unified TAPI Version 2.1 Interfaces
TAPI Assisted Telephony Functions

tapiRequestDrop No

tapiRequestMediaCall No

TAPI Call Center Functions

lineAgentSpecific No

lineGetAgentActivityList No

lineGetAgentCaps No

lineGetAgentGroupList No

lineGetAgentStatus No

lineProxyMessage No

lineProxyResponse No

lineSetAgentActivity No

lineSetAgentGroup No

lineSetAgentState No

TAPI Call Center Messages

LINE_AGENTSPECIFIC No

LINE_AGENTSTATUS No

LINE_PROXYREQUEST No

TAPI Call Center Structures

LINEAGENTACTIVITYENTRY No

LINEAGENTACTIVITYLIST No

LINEAGENTCAPS No

LINEAGENTGROUPENTRY No

LINEAGENTGROUPLIST No

LINEAGENTSTATUS No

LINEPROXYREQUEST No

Wave Functions

waveInAddBuffer Yes

waveInClose Yes

waveInGetDevCaps No

waveInGetErrorText No

waveInGetID Yes

waveInGetNumDevs No

waveInGetPosition Yes

waveInMessage No

Table B-1 Compliance to TAPI 2.1 (continued)

API/Message/Structure

Cisco
TAPI
Support Comments
B-7
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix B Cisco Unified TAPI Interfaces
Cisco Unified TAPI Version 2.1 Interfaces
waveInOpen Yes

waveInPrepareHeader Yes

waveInProc No

waveInReset Yes

waveInStart Yes

waveInStop No

waveInUnprepareHeader Yes

waveOutBreakLoop No

waveOutClose Yes

waveOutGetDevCaps Yes

waveOutGetErrorText No

waveOutGetID Yes

waveOutGetNumDevs No

waveOutGetPitch No

waveOutGetPlaybackRate No

waveOutGetPosition No

waveOutGetVolume No

waveOutMessage No

waveOutOpen Yes

waveOutPause No

waveOutPrepareHeader Yes

waveOutProc No

waveOutReset Yes

waveOutRestart No

waveOutSetPitch No

waveOutSetPlaybackRate No

waveOutSetVolume No

waveOutUnprepareHeader Yes

waveOutWrite Yes

Table B-1 Compliance to TAPI 2.1 (continued)

API/Message/Structure

Cisco
TAPI
Support Comments
B-8
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

TAPI Developer Guide for Cisco Unif
OL-18532-01

A
 P P E N D I X C

Troubleshooting Cisco Unified TAPI

This appendix contains information about troubleshooting Cisco Unified Communication manager. It
contains the following sections:

 • Cisco TSP 3.1 Installation Issues, page C-1

 • Cisco TSP Configuration in Windows, page C-2

 • Wave Driver Installation in Windows, page C-3

 • Wave Driver Uninstallation in Windows, page C-4

 • TSP Trace of Internal Messages, page C-5

 • CTI Ports and Cisco Unified Communications Manager Administration, page C-5

 • Route Points and Cisco Unified Communications Manager Administration, page C-6

 • TSP Operation Verification, page C-6

 • Version Compatibility, page C-6

 • Cisco TSP Readme, page C-6

 • Common Issues, page C-6

Cisco TSP 3.1 Installation Issues
When you are upgrading a system to Cisco TSP 3.1 in which Cisco TSP 3.0 is installed, run the Cisco
TSP 3.1 installation on the Cisco TSP 3.0 system to perform the upgrade. If you are installing Cisco TSP
3.0 on a system in which Cisco TSP 3.1 is installed, you must first uninstall Cisco TSP 3.1 by using the
Cisco TSP 3.1 installation and then run the Cisco TSP 3.0 installation. If you try to run the Cisco TSP
3.0 install on a system in which CiscoTSP 3.1 is already installed, you will experience significant
problems.

If you accidently install Cisco TSP 3.0 on top of Cisco TSP 3.1 then you must perform the following
steps to clean up the install for both Cisco TSP 3.0 and Cisco TSP 3.1.

Windows NT/95/98

Step 1 Go to ControlPanel\Telephony and remove all Cisco TSP entries in the provider list.

Step 2 Click to Telephony Drivers tab and select all the Cisco TSP entries and remove them from provider list.
C-1
ied Communications Manager Release 7.1(2)

Appendix C Troubleshooting Cisco Unified TAPI
Cisco TSP Configuration in Windows
Windows 2000

Step 1 Go to ControlPanel\Phone & Modem Options

Step 2 Click to Advanced tab, select all CiscoTSP entries and remove them from provider list.

Common to All Platforms

Step 1 Go to registry HKEY_LOCAL_MACHINE\SOFTWARE\Cisco Systems, Inc. and delete Cisco TSP
registry key with its subkeys.

Step 2 Delete all CiscoTSP*.tsp and CiscoTUISP*.dll from winnt\system32 directory. You may need to reboot
the system, so it will allow you to remove these files.

Step 3 Go to registry key
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall and
Delete sub keys {AF198881-AF5B-11D4-9DA2-000039ED6324} and CiscoTSP.

Note Do not delete the entire Uinstall key, just delete the
{AF198881-AF5B-11D4-9DA2-000039ED6324} and Cisco TSP key.

You have successfully removed all the Cisco TSP from the system. You can now safely install either
Cisco TSP 3.0 or Cisco TSP 3.1 onto the system.

Cisco TSP Configuration in Windows
With Cisco TSP 3.1, you must configure all the installed TSPs in the following steps.

Windows 95/98/NT

Step 1 From Control Panel, execute the “Telephony” utility.

Step 2 Click the Telephony Drivers tab and look in the list of service providers for CiscoTSP 0xx.

Step 3 Highlight this entry and click the Configure button. The Cisco TSP configuration window should
display.

Windows 2000

Step 1 From Control Panel execute, the Phone and Modem Options utility.

Step 2 Click the Advanced tab and look in the list of service providers for Cisco TSP 0xx.

Step 3 Highlight this entry and click the Configure button. The Cisco TSP configuration window should
display.
C-2
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix C Troubleshooting Cisco Unified TAPI
Wave Driver Installation in Windows
Windows NT/95/98

Step 1 Click User tab. The security fields comprise the Username and Password. To change the user name that
is stored in the registry, overwrite the name in the user name edit box.

Step 2 Enter the new password and confirm the password in the verify password edit box. The passwords must
match. This user and password must get configured in the Cisco Unified Call Manager user
administration for authentication to pass. Only one user name and password can remain active at a time.

Step 3 Click CTI Manager tab. The Cisco Unified Call Manager location information gets entered in this
dialog box. If the TSP is on the same machine as the Unified Call Manager, click the Local Machine
radio button. If the Unified Call Manager is on a different machine, then click the Call Manager IP
Address radio button and enter the IP address or click the Call Manager Name radio button and enter
the host name.

Step 4 Click Wave tab. Select the number of wave devices that this TSP will use. A limit exists on the maximum
number of wave devices that can be installed on a system. Users must have to choose the number of wave
devices through the available numbers.

Step 5 Click Trace tab. Refer to Turning on tracing for the TAPI Service Provider for details on this.

Step 6 Click Advanced tab. The Synchronous Message Timeout specifies the time that the TSP should wait to
receive a response to a CTI synchronous message. The value gets expressed in milliseconds, and the
default is 15000 ms.

Note TAPI User’s Guide describes the rest of the fields in the TSP configuration dialog box.

Step 7 Restart the telephony service after configuring the TSP, so that an application can run and get the
devices.

Note To Add/delete voice lines from the TSP configuration, you must first uninstall (using
instructions in “Uninstalling Wave Driver” section) and then add/delete the voice lines and then
install wave driver (using instructions in “Installing the Wave Drivers” section) if wave driver
has been already installed on the system. If no wave driver is installed on the system, add the
devices and then install the wave driver by using instructions in the “Installing the Wave Drivers”
section.

Wave Driver Installation in Windows
Windows NT

Step 1 From Control Panel, execute the Multimedia utility.

Step 2 Click the Devices tab. Highlight Audio Devices and click Add.

Step 3 Select Unlisted or Updated Driver and click OK.

Step 4 On the Install Driver window click Browse and browse to the C:\Program Files\Cisco\Wave Drivers
directory and click OK.

Step 5 In the Install Driver window, click OK again
C-3
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix C Troubleshooting Cisco Unified TAPI
Wave Driver Uninstallation in Windows
Step 6 Select Cisco TAPI Wave Driver in the Add Unlisted or Updated Driver window and click OK. When
you are prompted to reboot your machine, do so.

For Windows 2000

Step 1 From Control Panel, execute the Add/Remove Hardware utility.

Step 2 Select Add/Troubleshoot when the prompt – Choose a Hardware Task displays.

Step 3 Click the Next button.

Step 4 Select Add a New Device when the prompt – Choose a Hardware Device displays.

Step 5 Click the Next button.

Step 6 Select no when the question Do you want to search for new hardware devices? displays.

Step 7 Click the Next button. Select Sound, video and game controller when you are prompted for hardware
type.

Step 8 Click the Next button. Click the Have Disk button when you are prompted to Select a Device Driver.

Step 9 Click the Browse button on the Install from Disk window. Browse to C:\Program Files\Cisco\Wave
Drivers and select the – file OEMSETUP.

Step 10 To install the Cisco Wave Driver, click Open. When you prompted for Install from disk 1 for file
avaudio32.dll, choose Browse button and select path – C:\Program Files\Cisco\Wave Drivers and click
Open to install the avaudio32.dll. When you are prompted to reboot your machine, do so.

Note Be aware that the Cisco Wave Driver is not supported on Windows 95 or Windows 98.

Wave Driver Uninstallation in Windows
Windows NT

Step 1 From Control Panel, execute the Multimedia utility.

Step 2 Click the Devices tab.

Step 3 From Audio Devices highlight Audio for Cisco TAPI Wave Driver and select Remove. It will prompt
you with Are you sure, you want to remove Cisco TAPI Wave Driver? choose Yes.

Windows 2000

Step 1 From Control Panel, execute the Add/Remove Hardware utility.

Step 2 Select Uninstall when the prompt – Choose a Hardware Task displays.

Step 3 Click Next button.

Step 4 From Add/Remove Hardware Wizard choose the device to be removed from the list that is displayed.
C-4
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix C Troubleshooting Cisco Unified TAPI
TSP Trace of Internal Messages
Step 5 Select Cisco TAPI Wave Driver device. When prompted to uninstall, select Yes, want to uninstall.
Device gets uninstalled. Click on Finish button to complete uninstall. Restart Windows.

TSP Trace of Internal Messages
Procedure

Step 1 Choose Start > Settings > Control Panel and select Phone and Modem Options.

Step 2 Click Advanced tab and select the CiscoTSP 0xx and click Configure button.

Step 3 Click Trace tab. Select Trace On check box and select 1. TSP Trace to trace the TSP internal messages.
Select Error to just log errors in the TSP Select Detailed to log internal messages for debugging
purposes. Select 2. CTI Trace to trace the messages sent between CTI and TSP. Select 3. TSPI Trace
to trace the requests and events that are sent between TSP and TAPI.

Step 4 Set up a Directory that is the path for the trace log. For example, c:\Temp No. of Files: Setting this to a
value greater than or equal to 1 enables rolling log files. For example, a value of 10 will cause up to 10
log files to be used in a cyclic fashion. Max lines/file: specifies the maximum number of trace statements
that will be written to each log file. For example, a value of 1000 will cause up to 1000 trace statements
to be written to each log file.

CTI Ports and Cisco Unified Communications Manager
Administration

To add a CTI port, use the Cisco Unified Communications Manager Administration window and follow
these steps:

Procedure

Step 1 Choose Device > Phone. A window with the title Find and List Phones will display.

Step 2 On the right, click the link Add a New Phone. This will display a page titled Add a Phone.

Step 3 Select CTI Port from the drop down list of devices and click the Next button. Enter the device name of
the CTI port and tab to the next Description box. The name will display in the description field
automatically. You can edit this to be something else or leave it as is.

Step 4 Click the Insert button. To add a line to this CTI port, click the line number on the left and enter a
directory number.
C-5
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix C Troubleshooting Cisco Unified TAPI
Route Points and Cisco Unified Communications Manager Administration
Route Points and Cisco Unified Communications Manager
Administration

To add a route point, use the Cisco Unified Communications Manager Administration window and
follow these steps:

Procedure

Step 1 Choose Device > CTI Route Point. The Find and List CTI Route Points window is displayed.

Step 2 Click Add a New CTI Route Point. The CTI Route Point Configuration window is displayed.

Step 3 Enter the device name of the CTI route point and tab to the Description edit box. The name is displayed
in the description field automatically. Edit the Description field or click the Insert button.

TSP Operation Verification
To verify the TSP operation on the machine where the TSP is installed, use the Microsoft Windows
Phone Dialer Application. Find this application in the C:\Program Files\Windows NT directory under
the name dialer.exe. When the program is run, a dialog box displays that asks which line and address the
user wants to use to connect. If there are no lines in the Line drop down list, then a problem may exist
between the TSP and the Cisco Unified Communications Manager. If lines are available, choose one of
the lines, keep the Address set to zero (0) and click OK. Enter a Number to dial, and a call should be
placed to that number. If call is successful, you know that the TSP is operational on the machine where
the TSP is installed. If problems are encountered with installation and setup of Remote TSP, this test
represents a good way to verify whether the TSP is operating properly and that the problem is with the
configuration and setup of Remote TSP.

Version Compatibility
Cisco recommends that the TSP client should always use the plug-in that is downloaded from
corresponding Cisco Unified Communications Manager server.

Cisco TSP Readme
The Cisco Unified Communications Manager TSP readme file is copied to the client PC when TSP
plug-in is installed.

Common Issues
Table C-1 describes common issues and the work around.
C-6
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix C Troubleshooting Cisco Unified TAPI
Common Issues
Table C-1 Common Issues and Solutions

Issue Symptom
TSP
Version

UCM
Release Solution Reason

Cannot configure
TSP

TSP configuration
button stays grayed out.

5.1(1.6) 5.1(3) Copy Cisco
version of
libeay32.dll and
ssleay32.dll.

Cisco version of libeay32.dll
and ssleay32.dll gets overwritten
or old dlls are locked by
Windows during TSP
installation.

TSP upgrade issue TSP auto install does
not work. User cannot
run TSP auto upgrade
from 4.1 to 6.x.

4.1 4.1 1) Manually run
silent upgrade
from Client PC
CiscoTsp.exe /s
/v” /qn”.

2) Modify
TspAutoInstall.e
xe to support
silent upgrade
from 4.1 to 6.x.

Silent install parameter in 6.x
TSP changed due to IS 12
upgrade. Corresponding pre-6.x
release also needs to be changed
to support auto upgrade.
C-7
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix C Troubleshooting Cisco Unified TAPI
Common Issues
TSP crash with EM
operation

Cisco TSP announced
an error code of
0x80000050
(LINEERR_UNINITI
ALIZED). When EM
user logs in, TSP sends
line create to
application.
Application sends
LineOpen and
PhoneOpen at the same
time.

5.1 5.1.2 Apply ES that
contains fix.

The buffer overflow on
qbehelper caused the TSP crash.

No EM device
reported

When EM logs in,
application does not
see the device
information about the
EM device

5.1(1.6) 5.1(3) Apply ES that
has fix.

The problem is caused by race
condition in CiscoTSP. Where
Line is being initialized because
of lineOpen and in the same time
application sends LineClose
immediately.

During LineOpen process, TSP
will send request to CTIManager
to query Line info, and wait for
the synchronized response.

However, at CTIManager, while
processing the line info request,
it also almost at the same time
receives subsequent LineClose
request. Due to LineClose
request, CTIManager
cancels/ignores the processing
of the line info request. But TSP
side is still waiting for the
response. This explains the
reason that the TSP worker
thread got stuck.

Table C-1 Common Issues and Solutions

Issue Symptom
TSP
Version

UCM
Release Solution Reason
C-8
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

TAPI Developer Guide for Cisco Unif
OL-18532-01

A
 P P E N D I X D

Cisco Unified TAPI Operations-by-Release

The following tables list new, changed, and “under consideration or review” features for Cisco Unified
TAPI by Cisco Unified Communications Manager release.

 • Table D-1API Interfaces, page D-1

 • Table D-2TAPI Line Functions, page D-5

 • Table D-3TAPI Line Messages, page D-5

 • Table D-4TAPI Line Structures, page D-6

 • Table D-5TAPI Phone Functions, page D-6

 • Table D-6TAPI Phone Messages, page D-6

 • Table D-7TAPI Phone Structures, page D-7

Table Legend

Supported

Not Supported

Modified

UCR Under Consideration or Review

Table D-1 API Interfaces

TSP Features 3.1 3.2 3.3 4.0 4.1 4.2 4.3 5.0 5.1 6.0 6.1 7.0 7.1.2
7.1.3
(UCR)

8.0
(UCR)

CTI Manager and Support for
fault tolerance

Support for Cisco
CallManager Extension
Mobility
D-1
ied Communications Manager Release 7.1(2)

Appendix D Cisco Unified TAPI Operations-by-Release
Support for Multiple
CiscoTSP

(Redirect Support for) Blind
Transfer

Support for swap hold and
setup transfer with the
lineDevSpecific() function

Support for lineForward()

Support to Reset the Original
Called Party upon Redirect
with the lineDevSpecific
function

Support to Set the Original
Called Party upon Redirect
with the lineDevSpecific
function

Line In-Service or
Out-of-Service

Support for multiple
languages in the CiscoTSP
installation program and in
the CiscoTSP configuration
dialogs

User Deletion from Directory

Opening Two Lines on One
CTI Port Device

Support for linePark and
lineUnpark

Support for monitoring Call
Park Directory Numbers using
lineOpen

Call Reason Enhancements

Device Data Passthrough

CiscoTSP Auto Update

Multiple Calls per Line
Appearance

Shared Line Appearance

Select Calls

Transfer Changes

Table D-1 API Interfaces (continued)
D-2
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix D Cisco Unified TAPI Operations-by-Release
Direct Transfer

Conference Changes

Join

Privacy Release

Barge and cBarge

Dynamic Port Registration

Media Termination at Route
Points

QoS support

Support for Presentation
Indication

Windows 2003 Support

Unicode Support

SRTP support

Partition Support

SuperProvider Functionality

Security (TLS) support

FAC/CMC Support

CTI Port Third Party
Monitoring

Alternate Script Support

SIP Features Refer/Replaces

SIP URI

SIP phone support

Change Notification of
SupetProvider and
CallParkDN Monitoring flags

3XX

Intercom Support

Secure Conferencing Support

Monitoring & Recording

Table D-1 API Interfaces (continued)
D-3
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix D Cisco Unified TAPI Operations-by-Release
Arabic and Hebrew Language
Support

Do-Not-Disturb Support

Conference Enhancement

Join AcrossLine (SCCP)

Join AcrossLine (SIP)

Locale Infrastructure
Enhancement

Do-Not-Disturb Rejection

Call Party Normalization

Click-To-Conference

IPv6 Support on Linux

Windows Vista Support

Enhaced MWI

Direct Transfer Across Lines

Support for > 100DNs

Swap/Cancel support on
RoundTable phone

Drop Any Party

Park Reversion

Conditional Reset

Logical Partition

Assisted DPark

RT_Lite Phone Support

Device State Server

Exposing Busy Trigger / Line
Number / Voice Mail Pilot /
Line Label / New call
outbound rollover/

Consult call
rollover/JAL/DTAL flag and
IP address (IPv4 & IPv6) of
the device

Table D-1 API Interfaces (continued)
D-4
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix D Cisco Unified TAPI Operations-by-Release
Hunt List Support

Call Intercept Support

Entension Mobility Cross
Cluster (EMCC) Support

Call Pickup Support

End-To-End Call Tracing

Secure Monitoring Support

ViPR support

iSAC Codec Support

Exposing Meeting Place
Bridge Participant ID (CIA
1733)

Table D-2 TAPI Line Functions

TAPI Line Functions 3.1 3.2 3.3 4.0 4.1 4.2 4.3 5.0 5.1 6.0 6.1 7.0 7.1.2
7.1.3
(UCR)

8.0
(UCR)

LineAddToConference

LineCompleteTransfer

LineDevSpecific

LineForward

LinePark

LineUnpark

LineRedirect

LineBlindTransfer

LineDevSpecificFeature

LineRemoveFromConference

Table D-3 TAPI Line Messages

TAPI Line Messages 3.1 3.2 3.3 4.0 4.1 4.2 4.3 5.0 5.1 6.0 6.1 7.0 7.1.2
7.1.3
(UCR)

8.0
(UCR)

LINE_ADDRESSSTATE

Table D-1 API Interfaces (continued)
D-5
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix D Cisco Unified TAPI Operations-by-Release
LINE_CALLINFO

LINE_CALLSTATE

LINE_REMOVE

LINE_DEVSPECIFIC

LINE_DEVSPECIFICFEATUR
E

LINE_CALLDEVSPECIFIC

Table D-4 TAPI Line Structures

TAPI Line Structures 3.1 3.2 3.3 4.0 4.1 4.2 4.3 5.0 5.1 6.0 6.1 7.0 7.1.2
7.1.3
(UCR)

8.0
(UCR)

LINEADDRESSCAPS

LINECALLSTATUS

LINEFORWARD

LINEFORWARDLIST

LINEDEVCAPS

LINEDEVSTATUS

LINECALLINFO

Table D-5 TAPI Phone Functions

TAPI Phone Functions 3.1 3.2 3.3 4.0 4.1 4.2 4.3 5.0 5.1 6.0 6.1 7.0 7.1.2
7.1.3
(UCR)

8.0
(UCR)

PhoneDevSpecific

PhoneGetStatus

Table D-6 TAPI Phone Messages

TAPI Phone Messages 3.1 3.2 3.3 4.0 4.1 4.2 4.3 5.0 5.1 5.2 6.0 6.1 7.0 7.1.2
7.1.3
(UCR)

8.0
(UCR)

PHONE_REMOVE

Table D-3 TAPI Line Messages (continued)
D-6
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix D Cisco Unified TAPI Operations-by-Release
Table D-7 TAPI Phone Structures

TAPI Phone Structures 3.1 3.2 3.3 4.0 4.1 4.2 4.3 5.0 5.1 5.2 6.0 6.1 7.0 7.1.2
7.1.3
(UCR)

8.0
(UCR)

PHONECAPS

PHONESTATUS
D-7
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix D Cisco Unified TAPI Operations-by-Release
D-8
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

TAPI Developer Guide for Cisco Unif
OL-18532-01

A
 P P E N D I X E

CTI Supported Devices

Table E-1 provides information about CTI supported devices.

Table legend:

 • —Supported

 • —Not supported

Table E-1 CTI Supported Device Matrix

Device/Phone Model SCCP SIP Comments

Analog Phone

Cisco 12 S

Cisco 12 SP

Cisco 12 SP

Cisco 30 SP

Cisco 30 VIP

Cisco 3911

Cisco 7902

Cisco 7905

Cisco 7906

Cisco 7910

Cisco 7911

Cisco 7912

Cisco 7914 Sidecar

Cisco 7915 Sidecar — — Not yet tested

Cisco 7916 Sidecar — — Not yet tested
E-1
ied Communications Manager Release 7.1(2)

Appendix E CTI Supported Devices
Cisco 7920

Cisco 7921

Cisco 7931 CTI supported only if rollover is disabled

Cisco 7935

Cisco 7936

Cisco 7937

Cisco 7940

Cisco 7941

Cisco 7941G-GE

Cisco 7942

Cisco 7945

Cisco 7960

Cisco 7961

Cisco 7961G-GE

Cisco 7962

Cisco 7965

Cisco 7970

Cisco 7971

Cisco 7975

Cisco 7985

Cisco ATA

Cisco IP Communicator CTI support when running in desktop mode
depends on physical device; Softphone mode not
yet tested

Cisco Unified Personal
Communicator

Cisco VGC Phone

VG224 Not a CTI supported device.

VG248

Table E-1 CTI Supported Device Matrix (continued)

Device/Phone Model SCCP SIP Comments
E-2
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix E CTI Supported Devices
CTI Port — — CTI supported virtual device that does not use
SCCP or SIP

CTI Route Point — — CTI supported virtual device that does not use
SCCP or SIP

CTI Route Point (Pilot
Point)

— — CTI supported virtual device that does not use
SCCP or SIP

ISDN BRI Phone — — Not a CTI supported device

Table E-1 CTI Supported Device Matrix (continued)

Device/Phone Model SCCP SIP Comments
E-3
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

Appendix E CTI Supported Devices
E-4
TAPI Developer Guide for Cisco Unified Communications Manager Release 7.1(2)

OL-18532-01

TAPI Developer Guide for Cisc
OL-18532-01
I N D E X
A

Arabic language 3-15

AVAudio32.dll 5-150

B

Button ID values, defined by TAPI 5-138

button press monitoring 5-137

C

call control 1-6

CCiscoLineDevSpecificFeature class 6-49

CCiscoLineDevSpecificSetStatusMsgs 6-26

CiscoLineDevSpecificMsgWaiting class 6-18, 6-19

Cisco Unified CallManager JTAPI

classes and interfaces B-1, D-1

Cisco Unified TSP

activating 4-2

configuration settings

Advanced tab (figure) 4-12

CTI Manager tab (figure) 4-6

CTI Manager tab (table) 4-7

general tab (figure) 4-5

Language tab (figure) 4-13

overview 4-4

Trace tab (figure) 4-10

user tab (figure) 4-5

user tab (table) 4-6

Wave tab (figure) 4-7

Wave tab (table) 4-9

configuring 4-3
installing 4-1

installing the wave driver 4-13

managing 4-20

reinstalling 4-20

removing 4-19

setting up the client-server configuration 4-17

uninstalling 4-23

uninstalling the wave driver 4-18

upgrading 4-20

verifying the installation 4-16

classes

Audio Stream Control 6-24

CCiscoLineDevSpecificJoin 6-33

CCiscoLineDevSpecificPortRegistrationPerCall 6-28

CCiscoLineDevSpecificRedirectResetOrigCalled 6-
28

CCiscoLineDevSpecificRedirectSetOrigCalled 6-32

CiscoLineDevSpecific 6-16

CiscoLineDevSpecificUserControlRTPStream 6-24

Join 6-33

Message Waiting 6-18

Message Waiting Dirn 6-19

Port Registration per Call 6-28

Redirect Reset Original Called ID 6-27

Redirect Set Original Called ID 6-32

Set Status Messages 6-26

Setting RTP Parameters for Call 6-31

Swap-Hold/SetupTransfer 6-27

CloseLine 7-5

Cluster Support 1-4, 3-31

Code samples

CloseLine 7-5

MakeCall 7-1
IN-1
o Unified Communications Manager Release 7.1(2)

Index
OpenLine 7-2

conferences 3-14

secure 3-12

configuring

Cisco Unified TSP 4-3

client-server configuration using
Cisco Unified TSP 4-17

TSP 4-3

CTI

call survivability 1-5

Cisco TAPI application failure 1-5

Cisco Unified CallManager failure 1-4

manager 1-4

manager failure 1-5

port 1-7

route point 1-7

CTI supported devices E-1

D

directory change notification handling 3-32

do not disturb

do not disturb-reject 3-9

Do Not Disturb (DND) 3-13, 6-49

E

examples

CloseLine 7-5

MakeCall 7-1

OpenLine 7-2

Extension Mobility 3-31

extensions

Cisco line device specific TAPI functions 6-1

Cisco phone device specific TAPI functions 6-53

F

fault tolerance 1-4, 3-31
IN-2
TAPI Developer Guide for Cisco Unified Communications Manager
first party call control 1-7

flags for opening the device 5-153

Formats supported by TAPI wave driver 5-157

forwarding enhancement 3-31

functions

phone functions 5-119

H

Hebrew language 3-15

I

installation 3-33

intercom 3-11

L

languages

Arabic and Hebrew 3-15

line device structures

LINEADDRESSCAPS 5-73

LINEADDRESSSTATUS 5-81

LINEAPPINFO 5-82

LINECALLINFO 5-83

LINECALLLIST 5-90

LINECALLPARAMS 5-91

LINECALLSTATUS 5-92

LINECARDENTRY 5-95

LINECOUNTRYENTRY 5-96

LINECOUNTRYLIST 5-98

LINEDEVCAPS 5-99

LINEDEVSTATUS 5-103

LINEEXTENSIONID 5-105

LINEFORWARD 5-105

LINEFORWARDLIST 5-108

LINEGENERATETONE 5-108

LINEINITIALIZEEXPARAMS 5-109
 Release 7.1(2)
OL-18532-01

Index
LINELOCATIONENTRY 5-110

LINEMESSAGE 5-112

LINEMONITORTONE 5-113

LINEPROVIDERENTRY 5-113

LINEPROVIDERLIST 5-114

LINEREQMAKECALL 5-115

LINETRANSLATECAPS 5-115

LINETRANSLATEOUTPUT 5-116

line functions

lineAccept 5-4

lineAddProvider 5-4

lineAddToConference 5-5

lineAnswer 5-5

lineBlindTransfer 5-6

lineCallbackFunc 5-7

lineClose 5-8

lineCompleteTransfer 5-8

lineConfigProvider 5-9

lineDeallocateCall 5-10

lineDevSpecific 5-10

lineDial 5-13

lineDrop 5-14

lineForward 5-14

lineGenerateDigits 5-17

lineGenerateTone 5-17

lineGetAddressCaps 5-18

lineGetAddressID 5-19

lineGetAddressStatus 5-20

lineGetCallInfo 5-21

lineGetCallStatus 5-21

lineGetConfRelatedCalls 5-22

lineGetDevCaps 5-22

lineGetID 5-23

lineGetLineDevStatus 5-24

lineGetMessage 5-25

lineGetNewCalls 5-26

lineGetNumRings 5-27

lineGetProviderList 5-27

lineGetRequest 5-28
TAPI Developer Guid
OL-18532-01
lineGetStatusMessages 5-29

lineGetTranslateCaps 5-30

lineHandoff 5-31

lineHold 5-32

lineInitialize 5-32

lineInitializeEx 5-33

lineMakeCall 5-34

lineMonitorDigits 5-35

lineMonitorTones 5-36

lineNegotiateAPIVersion 5-36

lineNegotiateExtVersion 5-37

lineOpen 5-38

linePark 5-40

linePrepareAddToConference 5-41

lineRedirect 5-42

lineRegisterRequestRecipient 5-43

lineRemoveProvider 5-45

lineSetAppPriority 5-45

lineSetCallPrivilege 5-47

lineSetNumRings 5-47

lineSetStatusMessages 5-48

lineSetTollList 5-49

lineSetupConference 5-50

lineSetupTransfer 5-51

lineShutdown 5-52

lineTranslateAddress 5-52

lineTranslateDialog 5-54

lineUnhold 5-55

lineUnpark 5-56

line messages

LINE_ADDRESSSTATE 5-57

LINE_APPNEWCALL 5-58

LINE_CALLINFO 5-60

LINE_CALLSTATE 5-60

LINE_CLOSE 5-64

LINE_CREATE 5-64

LINE_DEVSPECIFIC 5-65

LINE_GENERATE 5-68

LINE_LINEDEVSTATE 5-68
IN-3
e for Cisco Unified Communications Manager Release 7.1(2)

Index
LINE_MONITORTDIGITS 5-69

LINE_MONITORTONE 5-70

LINE_REMOVE 5-71

LINE_REPLY 5-71

LINE_REQUEST 5-72

lines

line functions 5-1

M

MakeCall 7-1

messages

device specific messages 6-58

LINE_DEVSPECIFIC 6-58

line messages 5-44, 5-56

phone messages 5-136

monitoring call park directory numbers 1-8

monitor privilege 5-131

multiple Cisco Unified TSPs 1-8

O

OpenLine 7-2

owner privilege 5-131

P

Phone button values 5-138

phone functions

phoneCallbackFunc 5-119

phoneClose 5-120

phoneDevSpecific 5-120

phoneGetDevCaps 5-121

phoneGetDisplay 5-122

phoneGetLamp 5-122

phoneGetMessage 5-123

phoneGetRing 5-124

phoneGetStatusMessages 5-125
IN-4
TAPI Developer Guide for Cisco Unified Communications Manager
phoneInitialize 5-127

phoneInitializeEx 5-128

phoneNegotiateAPIVersion 5-130

phoneOpen 5-131

phoneSetDisplay 5-132

phoneSetLamp 5-133

phoneSetStatusMessages 5-134

phoneShutdown 5-135

phone messages

PHONE_BUTTON 5-137

PHONE_CLOSE 5-139

PHONE_CREATE 5-139

PHONE_REMOVE 5-140

PHONE_REPLY 5-141

PHONE_STATE 5-141

PHONEPRIVILEGE_MONITOR 5-132

PHONEPRIVILEGE_OWNER 5-132

phones, SIP 3-16

Phone status changes 5-134

phone structure

PHONECAPS 5-143

phone structures

PHONEINITIALIZEEXPARAMS 5-145

PHONEMESSAGE 5-146

R

Ring modes supported 5-124

S

secure conferencing 3-12

silent install 3-33

SIP phones 3-16

Status changes, phone devices 5-134

structures

line device 5-72

phone structures 5-143
 Release 7.1(2)
OL-18532-01

Index
T

TAPI Wave Driver, formats supported 5-153

third party call control 1-7

translation pattern 3-31

TSP

activating 4-2

configuration settings

Advanced tab (figure) 4-12

CTI Manager tab (figure) 4-6

CTI Manager tab (table) 4-7

general tab (figure) 4-5

Language tab (figure) 4-13

overview 4-4

Trace tab (figure) 4-10

user tab (figure) 4-5

user tab (table) 4-6

Wave tab (figure) 4-7

Wave tab (table) 4-9

configuring 4-3

installing 4-1

installing the wave driver 4-13

managing 4-20

reinstalling 4-20

removing 4-19

setting up client-server configuration 4-17

uninstalling 4-23

uninstalling the wave driver 4-18

upgrading 4-20

verifying the installation 4-16

W

wave driver

installing 4-13

saving information 4-15

uninstalling 4-18

verifying wave driver exists 4-16

wave functions
TAPI Developer Guid
OL-18532-01
waveInAddBuffer 5-150

waveInClose 5-151

waveInGetID 5-151

waveInGetPosition 5-152

waveInOpen 5-152

waveInPrepareHeader 5-153

waveInReset 5-154

waveInStart 5-154

waveInUnprepareHeader 5-155

waveOutClose 5-155

waveOutGetDevCaps 5-155

waveOutGetID 5-156

waveOutGetPosition 5-156

waveOutOpen 5-157

waveOutPrepareHeader 5-158

waveOutReset 5-159

waveOutUnprepareHeader 5-159

waveOutWrite 5-159

X

xsi object pass through 3-33
IN-5
e for Cisco Unified Communications Manager Release 7.1(2)

Index
IN-6
TAPI Developer Guide for Cisco Unified Communications Manager
 Release 7.1(2)

OL-18532-01

	TAPI Developers Guide for Cisco Unified Communications Manager Release 7.1(2)
	Contents
	Preface
	Purpose
	Audience
	Organization
	Related Documentation
	Developer Support
	Conventions
	Obtaining Documentation and Submitting a Service Request
	Cisco Product Security Overview
	OpenSSL/Open SSL Project

	Overview
	Cisco Unified TSP Overview
	Cisco Unified TSP Concepts
	Basic TAPI Applications
	Cisco TSP Components
	Cisco Wave Drivers
	TAPI Debugging
	CTI Manager (Cluster Support)
	Cisco Unified Communications Manager Failure
	Call Survivability
	CTI Manager Failure
	Cisco Unified TAPI Application Failure

	QoS Support
	Presentation Indication (PI)
	Call Control
	First-Party Call Control
	Third-Party Call Control

	CTI Port
	Dynamic Port Registration
	CTI Route Point
	Media Termination at Route Point
	Monitoring Call Park Directory Numbers
	Multiple Cisco Unified TSPs
	CTI Device/Line Restriction

	New and Changed Information
	Cisco Unified Communications Manager Release 7.1(2)
	Features Supported in Previous Releases
	Cisco Unified Communications Manager Release 7.0(1)
	Cisco Unified Communications Manager Release 6.1(x)
	Cisco Unified Communications Manager Release 6.0(1)
	Backward Compatibility

	Cisco Unified Communications Manager Release 5.1
	Cisco Unified Communications Manager Release 5.0
	Cisco Unified Communications Manager Release 4.x
	Cisco Unified Communications Manager Releases Prior to 4.x

	Features Supported by TSP
	IPv6 Support
	Direct Transfer Across Lines Support
	Message Waiting Indicator Enhancement
	Swap and Cancel Softkey Support
	Drop-Any-Party Support
	Park Monitoring Support
	Logical Partitioning Support
	Support for Cisco Unfied IP Phone 6900 Series
	Join Across Lines (SIP)
	Localization Infrastructure Changes
	Do Not Disturb-Reject
	Calling Party Normalization
	Click to Conference
	Microsoft Windows Vista
	Join Across Lines (SCCP)
	Intercom Support
	Secure Conferencing Support
	Do Not Disturb
	Conference Enhancements
	Arabic and Hebrew Language Support
	Additional Features Supported on SIP Phones
	Silent Monitoring
	Silent Recording
	Calling Party IP Address
	Partition Support
	Alternate Script
	Secure RTP
	SuperProvider
	Refer and Replaces for Phones that are Running SIP
	SIP URL Address
	3XX
	Secure TLS Support
	Monitoring Call Park Directory Numbers
	Super Provider Support
	Unicode Support
	Line-Side Phones That Runs SIP
	Redirect and Blind Transfer
	lineRedirect
	lineDevSpecific - Redirect Reset Original Called ID
	lineDevSpecific - Redirect Set Original Called ID
	lineDevSpecific - Redirect FAC CMC
	lineBlindTransfer
	lineDevSpecific - BlindTransfer FAC CMC

	Direct Transfer
	Join
	Set the Original Called Party upon Redirect
	Cisco Unified TSP Auto Update
	Multiple Calls per Line Appearance
	Maximum Number of Calls
	Busy Trigger
	Call Forward No Answer Timer

	Shared Line Appearance
	Select Calls
	Forced Authorization Code and Client Matter Code
	CTI Port Third-Party Monitoring Port
	Translation Pattern
	Forwarding
	Extension Mobility
	Directory Change Notification
	Privacy Release
	Barge and cBarge
	XSI Object Pass Through
	Silent Install Support

	Cisco Unified TAPI Installation
	Installing the Cisco Unified TSP
	Silent Installation
	Activating the Cisco Unified TSP
	Configuring the Cisco Unified TSP
	Cisco Unified TSP Configuration Settings
	General
	User
	CTI Manager
	Wave
	Trace
	Advanced
	Language

	Installing the Wave Driver
	Saving Wave Driver Information
	Verifying the Wave Driver Exists
	Verifying the Cisco Unified TSP Installation
	Setting Up Client-Server Configuration
	Uninstalling the Wave Driver
	Removing the Cisco Unified TSP
	Managing the Cisco Unified TSP
	Reinstalling the Cisco Unified TSP
	Upgrading the Cisco Unified TSP
	Auto Update for Cisco Unified TSP Upgrades
	Auto Update Behavior

	Uninstalling the Cisco Unified TSP

	Basic TAPI Implementation
	Overview
	TAPI Line Functions
	lineAccept
	Function Details
	Parameters

	lineAddProvider
	Function Details
	Parameters
	Return Values

	lineAddToConference
	Function Details
	Parameters

	lineAnswer
	Function Details
	Parameters

	lineBlindTransfer
	Function Details
	Parameters

	lineCallbackFunc
	Function Details
	Parameters
	Further Details

	lineClose
	Function Details
	Parameter

	lineCompleteTransfer
	Function Details
	Parameters

	lineConfigProvider
	Function Details
	Parameters
	Return Values

	lineDeallocateCall
	Function Details
	Parameter

	lineDevSpecific
	Function Details
	Parameters

	lineDevSpecificFeature
	Function Details
	Parameters
	Return Values
	Error Codes

	lineDial
	Function Details
	Parameters

	lineDrop
	Function Details
	Parameters

	lineForward
	Function Details
	Parameters
	Return Values

	lineGenerateDigits
	Function Details
	Parameters

	lineGenerateTone
	Function Details
	Parameters

	lineGetAddressCaps
	Function Details
	Parameters

	lineGetAddressID
	Function Details
	Parameters

	lineGetAddressStatus
	Function Details
	Parameters

	lineGetCallInfo
	Function Details
	Parameters

	lineGetCallStatus
	Function Details
	Parameters

	lineGetConfRelatedCalls
	Function Details
	Parameters
	Return Values

	lineGetDevCaps
	Function Details
	Parameters

	lineGetID
	Function Details
	Parameters

	lineGetLineDevStatus
	Function Details
	Parameters

	lineGetMessage
	Function Details
	Parameters
	Return Values

	lineGetNewCalls
	Function Details
	Parameters
	Return Values

	lineGetNumRings
	Function Details
	Parameters
	Return Values

	lineGetProviderList
	Function Details
	Parameters
	Return Values

	lineGetRequest
	Function Details
	Parameters
	Return Values

	lineGetStatusMessages
	Function Details
	Parameters
	Return Values

	lineGetTranslateCaps
	Function Details
	Parameters
	Return Values

	lineHandoff
	Function Details
	Parameters
	Return Values

	lineHold
	Function Details
	Parameter

	lineInitialize
	Function Details
	Parameters
	Return Values

	lineInitializeEx
	Function Details
	Parameters

	lineMakeCall
	Function Details
	Parameters

	lineMonitorDigits
	Function Details
	Parameters

	lineMonitorTones
	Function Details
	Parameters

	lineNegotiateAPIVersion
	Function Details
	Parameters

	lineNegotiateExtVersion
	Function Details
	Parameters

	lineOpen
	Function Details
	Parameters

	linePark
	Function Details
	Parameters

	linePrepareAddToConference
	Function Details
	Parameters
	Return Values

	lineRedirect
	Function Details
	Parameters

	lineRegisterRequestRecipient
	Function Details
	Parameters
	Return Values

	lineRemoveFromConference
	Function Details
	Parameters
	Return Values

	lineRemoveProvider
	Function Details
	Parameters
	Return Values

	lineSetAppPriority
	Function Details
	Parameters
	Return Values

	lineSetCallPrivilege
	Function Details
	Parameters
	Return Values

	lineSetNumRings
	Function Details
	Parameters
	Return Values

	lineSetStatusMessages
	Function Details
	Parameters

	lineSetTollList
	Function Details
	Parameters
	Return Values

	lineSetupConference
	Function Details
	Parameters

	lineSetupTransfer
	Function Details
	Parameters

	lineShutdown
	Function Details
	Parameters

	lineTranslateAddress
	Function Details
	Parameters
	Return Values

	lineTranslateDialog
	Function Details
	Parameters
	Return Values

	lineUnhold
	Function Details
	Parameters

	lineUnpark
	Function Details
	Parameters

	TAPI Line Messages
	LINE_ADDRESSSTATE
	Function Details
	Parameters

	LINE_APPNEWCALL
	Function Details
	Parameters

	LINE_CALLDEVSPECIFIC
	Function Details
	Parameters

	LINE_CALLINFO
	Function Details
	Parameters

	LINE_CALLSTATE
	Function Details
	Parameters

	LINE_CLOSE
	Function Details
	Parameters

	LINE_CREATE
	Function Details
	Parameters

	LINE_DEVSPECIFIC
	Function Details
	Parameters

	LINE_DEVSPECIFICFEATURE
	Function Details
	Parameters

	LINE_GATHERDIGITS
	Function Details
	Parameters

	LINE_GENERATE
	Function Details
	Parameters

	LINE_LINEDEVSTATE
	Function Details
	Parameters

	LINE_MONITORDIGITS
	Function Details
	Parameters

	LINE_MONITORTONE
	Function Details
	Parameters

	LINE_REMOVE
	Function Details
	Parameters

	LINE_REPLY
	Function Details
	Parameters

	LINE_REQUEST
	Function Details
	Parameters

	TAPI Line Device Structures
	LINEADDRESSCAPS
	LINEADDRESSSTATUS
	LINEAPPINFO
	Structure Details

	LINECALLINFO
	LINECALLLIST
	Structure Details

	LINECALLPARAMS
	LINECALLSTATUS
	LINECARDENTRY
	Structure Details
	Members

	LINECOUNTRYENTRY
	Structure Details

	LINECOUNTRYLIST
	Structure Details

	LINEDEVCAPS
	LINEDEVSTATUS
	LINEEXTENSIONID
	LINEFORWARD
	Structure Details

	LINEFORWARDLIST
	Structure Details

	LINEGENERATETONE
	Structure Details

	LINEINITIALIZEEXPARAMS
	Structure Details
	Further Details

	LINELOCATIONENTRY
	Structure Details

	LINEMESSAGE
	Structure Details
	Further Details

	LINEMONITORTONE
	Structure Details

	LINEPROVIDERENTRY
	Structure Details

	LINEPROVIDERLIST
	Structure Details

	LINEREQMAKECALL
	Structure Details

	LINETRANSLATECAPS
	Structure Details

	LINETRANSLATEOUTPUT
	Structure Details

	TAPI Phone Functions
	phoneCallbackFunc
	Function Details
	Parameters
	Further Details

	phoneClose
	Function Details
	Parameter

	phoneDevSpecific
	Function Details
	Parameter

	phoneGetDevCaps
	Function Details
	Parameters

	phoneGetDisplay
	Function Details
	Parameters

	phoneGetLamp
	Function Details
	Parameters

	phoneGetMessage
	Function Details
	Parameters
	Return Values

	phoneGetRing
	Function Details
	Parameters

	phoneGetStatus
	Function Details
	Parameters
	Return Values

	phoneGetStatusMessages
	Function Details
	Parameters
	Return Values

	phoneInitialize
	Function Details
	Parameters
	Return Values

	phoneInitializeEx
	Function Details
	Parameters
	Return Values

	phoneNegotiateAPIVersion
	Function Details
	Parameters
	Return Values

	phoneOpen
	Function Details
	Parameters

	phoneSetDisplay
	Function Details
	Parameters

	phoneSetLamp
	Function Details
	Parameters

	phoneSetStatusMessages
	Function Details
	Parameters

	phoneShutdown
	Function Details
	Parameter
	Return Values

	TAPI Phone Messages
	PHONE_BUTTON
	Function Details
	Parameters

	PHONE_CLOSE
	Function Details
	Parameters

	PHONE_CREATE
	Function Details
	Parameters

	PHONE_REMOVE
	Function Details
	Parameters

	PHONE_REPLY
	Function Details
	Parameters

	PHONE_STATE
	Function Details
	Parameters

	TAPI Phone Structures
	PHONECAPS Structure
	Members

	PHONEINITIALIZEEXPARAMS
	Structure Details
	Members

	PHONEMESSAGE
	Structure Details
	Members
	Further Details

	PHONESTATUS
	Structure Details
	Members

	VARSTRING
	Structure Details
	Members

	Wave Functions
	waveInAddBuffer
	Function Details
	Parameters

	waveInClose
	Function Details
	Parameter

	waveInGetID
	Function Details
	Parameters

	waveInGetPosition
	Function Details
	Parameters

	waveInOpen
	Function Details
	Parameters

	waveInPrepareHeader
	Function Details
	Parameters

	waveInReset
	Function Details
	Parameter

	waveInStart
	Function Details
	Parameter

	waveInUnprepareHeader
	Function Details
	Parameters

	waveOutClose
	Function Details
	Parameter

	waveOutGetDevCaps
	Function Details
	Parameters

	waveOutGetID
	Function Details
	Parameters

	waveOutGetPosition
	Function Details
	Parameters

	waveOutOpen
	Function Details
	Parameters

	waveOutPrepareHeader
	Function Details
	Parameters

	waveOutReset
	Function Details
	Parameter

	waveOutUnprepareHeader
	Function Details
	Parameters

	waveOutWrite
	Function Details
	Parameters

	Cisco Device-Specific Extensions
	Cisco Line Device Specific Extensions
	LINEDEVCAPS
	Detail
	Parameters

	LINECALLINFO
	Details
	Parameters

	LINEDEVSTATUS
	Detail
	Parameters

	CCiscoLineDevSpecific
	Header File
	Class Detail
	Functions
	Parameter
	Subclasses
	Enumeration

	Message Waiting
	Class Detail
	Parameters

	Message Waiting Dirn
	Class Detail
	Parameters

	Message Summary
	Class Detail
	Parameters

	Message Summary Dirn
	Class Detail
	Parameters

	Audio Stream Control
	Class Detail
	Parameters

	Set Status Messages
	Class Detail
	Parameters

	Swap-Hold/SetupTransfer
	Class Details
	Parameters

	Redirect Reset Original Called ID
	Description
	Class Details
	Parameters

	Port Registration per Call
	Class Details
	Parameters

	Setting RTP Parameters for Call
	Class Details
	Parameters

	Redirect Set Original Called ID
	Class Details
	Parameters

	Join
	Class Details
	Parameters

	Set User SRTP Algorithm IDs
	Class Detail
	Supported Algorithm Constants
	Parameters

	Explicit Acquire
	Class Details
	Parameters

	Explicit De-Acquire
	Class Details
	Parameters

	Redirect FAC CMC
	Class Detail
	Parameters

	Blind Transfer FAC CMC
	Class Detail
	Parameters

	CTI Port Third Party Monitor
	Class Detail
	Parameters

	Send Line Open
	Class Detail

	Set Intercom SpeedDial
	Class Detail
	Parameters

	Intercom Talk Back
	Class Detail

	Redirect with Feature Priority
	Detail
	Parameters

	Start Call Monitoring
	Class Detail
	Parameters
	Return Values

	Start Call Recording
	Class Detail
	Parameters
	Return Values

	StopCall Recording
	Class Detail
	Parameters
	Return Values

	Set IP Address Mode
	Class Detail
	Parameters

	Set IPv6 Address
	Class Detail
	Parameters

	Set RTP Parameters for IPv6 Calls
	Class Detail
	Parameters

	Direct Transfer
	Class Detail
	Parameters

	Cisco Line Device Feature Extensions
	LINEDEVCAPS
	LINEDEVSTATUS
	CCiscoLineDevSpecificFeature
	Header File
	Class Detail
	Functions
	Parameter
	Subclasses

	Do-Not-Disturb
	Class Detail
	Parameters

	Do-Not-Disturb Change Notification Event
	Message Details
	Parameters

	Cisco Phone Device-Specific Extensions
	CCiscoPhoneDevSpecific
	Header File
	Class Detail
	Functions
	Parameter
	Subclasses
	Enumeration

	CCiscoPhoneDevSpecificDataPassThrough
	Class Detail
	Parameters

	CCiscoPhoneDevSpecificAcquire
	Class Details
	Parameters

	CCiscoPhoneDevSpecificDeacquire
	Class Details
	Parameters

	CCiscoPhoneDevSpecificGetRTPSnapshot
	Class Details
	Parameters

	Messages
	Start Transmission Events
	Start Reception Events
	Stop Transmission Events
	Stop Reception Events
	Existing Call Events
	Open Logical Channel Events
	LINECALLINFO_DEVSPECIFICDATA Events
	Call Tone Changed Events

	Cisco Unified TAPI Examples
	MakeCall
	OpenLine
	CloseLine

	Message Sequence Charts
	Abbreviations
	Manual Outbound Call
	Blind Transfer
	Redirect Set Original Called (TxToVM)
	Shared Lines-Initiating a New Call Manually
	Presentation Indication
	Making a Call Through Translation Pattern
	Blind Transfer Through Translation Pattern

	Forced Authorization and Client Matter Code Scenarios
	Manual Call to a Destination that Requires an FAC
	Manual Call to a Destination that Requires both FAC and CMC
	lineMakeCall to a Destination that Requires an FAC
	lineMakeCall to a Destination that Requires Both FAC and CMC
	Timeout Waiting for FAC or Invalid FAC

	Refer and Replaces Scenarios
	In-Dialog Refer - Referrer in Cisco Unified Communications Manager Cluster
	In-Dialog Refer Where ReferToTarget Redirects the Call in Offering State
	In-Dialog Refer Where Refer Fails or Refer to Target is Busy
	Out-of-Dialog Refer
	Invite with Replace for Confirmed Dialog
	Refer with Replace for All in Cluster
	Refer with Replace for All in Cluster, Replace Dialog Belongs to Another Station

	3XX
	SRTP
	Media Terminate by Application (Open Secure CTI Port or RP)
	Media Terminate by TSP Wave Driver (open secure CTI port)

	Intercom
	Application Invoking Speeddial
	Agent Invokes Talkback
	Change the SpeedDial

	Secure Conferencing
	Conference with All Parties as Secure
	Hold or Resume in Secure Conference

	Monitoring and Recording
	Monitoring a Call
	Automatic Recording
	Application-Controlled Recording

	Conference Enhancements
	Noncontroller Adding Parties to Conferences
	Chaining Two Ad Hoc Conferences by Using Join

	Calling Party IP Address
	Basic Call
	Consultation Transfer
	Consultation Conference
	Redirect

	Click to Conference
	Drop Party by Using Click-2-Conference
	Drop Entire Conference by Using Click-2-Conference Feature

	Calling Party Normalization
	Incoming Call from PSTN to End Point
	Incoming Call from National PSTN to CTI-Observed End Point
	Incoming Call from International PSTN to CTI-Observed End Point
	Outgoing Call from CTI-Observed End Point to PSTN Number
	Outgoing Call from CTI-Observed End Point to National PSTN Number
	Outgoing Call from CTI-Observed End Point to International PSTN Number

	Do Not Disturb-Reject
	Application Enables DND-R on a Phone
	Normal Feature Priority
	Feature Priority - Emergency

	Join Across Lines
	IPv6 Use Cases
	Direct Transfer Across Lines
	Swap or Cancel Support
	Drop Any Party
	Park Monitoring
	Logical Partitioning Support
	Support for Cisco IP Phone 6900 Series

	Cisco Unified TAPI Interfaces
	Cisco Unified TAPI Version 2.1 Interfaces
	Core Package

	Troubleshooting Cisco Unified TAPI
	Cisco TSP 3.1 Installation Issues
	Cisco TSP Configuration in Windows
	Wave Driver Installation in Windows
	Wave Driver Uninstallation in Windows
	TSP Trace of Internal Messages
	CTI Ports and Cisco Unified Communications Manager Administration
	Route Points and Cisco Unified Communications Manager Administration
	TSP Operation Verification
	Version Compatibility
	Cisco TSP Readme
	Common Issues

	Cisco Unified TAPI Operations-by-Release
	CTI Supported Devices
	Index

